您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (7): 35-42.doi: 10.6040/j.issn.1671-9352.1.2015.E28

• • 上一篇    下一篇

基于社会化标注和网页分类的个性化检索方法

管毅舟,徐博,林原,林鸿飞*   

  1. 大连理工大学计算机科学与技术学院, 辽宁 大连 116024
  • 收稿日期:2015-09-25 出版日期:2016-07-20 发布日期:2016-07-27
  • 通讯作者: 林鸿飞(1962— ),男,博士,教授,博士生导师,研究方向为信息检索和情感计算. E-mail: hflin@dlut.edu.cn E-mail:xubo2011@mail.dlut.edu.cn
  • 作者简介:管毅舟(1990— ),男,硕士研究生,研究方向为个性化检索. E-mail:xubo2011@mail.dlut.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61277370,61402075,61572102);辽宁省自然科学基金资助项目(201202031,2014020003)

Personalized search based on folksonomy and category

GUAN Yi-zhou, XU Bo, LIN Yuan, LIN Hong-fei*   

  1. Department of Computer Science and Technology, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2015-09-25 Online:2016-07-20 Published:2016-07-27

摘要: Web2.0为信息检索提供了很多可以使用的资源,其中两种资源对于个性化检索而言非常有益,那就是社会化标注和网页分类信息。用户给出的标签反映了其对于网页的认识和思考,而用户标注过的网页的类别则反映了用户在选择时的偏好和兴趣,两者的结合使用对个性化检索能起到良好的效果。在仅使用社会化标注进行个性化检索的方法上,提出基于标注和网页分类进行个性化检索的方法,通过两者结合筛选出兴趣和偏好相近的用户,进行用户属性的扩展,并在扩展时考虑用户的质量,从而能在个性化检索中取得更好的结果。在真实数据集上的实验表明,本文方法具有一定的优势。

关键词: 社会化标注, 个性化检索, 网页分类

Abstract: Web 2.0 has provided information retrieval with many useful resources. Two kinds of them are beneficial for personalized search, which are social annotations and categorical information. The annotations that user gives come from his consideration, and the categories of the documents that he annotated reflect his preference and interest. So combining these two kinds of resources will benefit the personalized search. Our work is based on a personalized searching method with only annotations, and we propose a method based on both annotations and categorical information. We use them to screen similar users in preference and interest to extend users profile, so that user extended profile will be more accurate. The experiment based on real dataset proves that our method has superiority.

Key words: social annotation, web categorical, personalized search

中图分类号: 

  • TP309
[1] CARMEL D, ZWERDLING N, GUY I, et al. Personalized social search based on the users social network[C] //Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York: ACM, 2009: 1227-1236.
[2] JOACHIMS T, GRANKA L, PAN B, et al. Accurately interpreting click through data as implicit feedback[C] //Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2005: 154-161.
[3] CHIRITA P A, FIRAN C S, NEJDL W. Personalized query expansion for the web[C] //Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2007: 7-14.
[4] SHEN X, TAN B, ZHAI C X. Implicit user modeling for personalized search[C] //Proceedings of the 14th ACM International Conference on Information and Knowledge Management. New York: ACM, 2005: 824-831.
[5] NOLL M G, MEINEL C. The metadata triumvirate: social annotations, anchor texts and search queries[C] //Proceedings of IEEE/WIC/ACM International Conference o Web Intelligence and Intelligent Agent Technology. Piscataway: IEEE, 2008, 1: 640-647.
[6] JONES K S. A statistical interpretation of term specificity and its application in retrieval[J]. Journal of Documentation, 1972, 28(1): 11-21.
[7] BENZ D, HOTHO A, JÄSCHKE R, et al. Query logs as folksonomies[J]. Datenbank-Spektrum, 2010, 10(1):15-24.
[8] CHOWDHURY G. Introduction to modern information retrieval[M]. London: Facet Publishing, 2010.
[9] SUGIYAMA K, HATANO K, YOSHIKAWA M. Adaptive web search based on user profile constructed without any effort from users[C] //Proceedings of the 13th International Conference on World Wide Web. New York: ACM, 2004: 675-684.
[10] LUXENBURGER J, ELBASSUONI S, WEIKUM G. Task-aware search personalization[C] //Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2008: 721-722.
[11] TEEVAN J, DUMAIS S T, LIEBLING D J. To personalize or not to personalize: modeling queries with variation in user intent[C] //Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2008: 163-170.
[12] MA Z, PANT G, SHENG O R L. Interest-based personalized search[J]. ACM Transactions on Information Systems(TOIS), 2007, 25(1):1-38.
[13] XU S, BAO S, FEI B, et al. Exploring folksonomy for personalized search[C] //Proceedings of the 31st annual international ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2008: 155-162.
[14] BOUADJENEK M R, HACID H, BOUZEGHOUB M. Sopra: a new social personalized ranking function for improving web search[C] //Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2013: 861-864.
[15] NOLL M G, MEINEL C. Web search personalization via social bookmarking and tagging[M]. Berlin: Springer Heidelberg, 2007.
[16] ROBERTSON S E, WALKER S. Some simple effective approximations to the 2-poisson model for probabilistic weighted retrieval[C] //Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:Springer-Verlag, 1994: 232-241.
[17] VALLET D, CANTADOR I, JOSE J M. Personalizing web search with folksonomy-based user and document profiles[J]. Advances in Information Retrieval, 2010: 420-431.
[18] XU Z, LUKASIEWICZ T, TIFREA-MARCIUSKA O. Improving personalized search on the social web based on similarities between users[J]. Springer International Publishing, 2014: 306-319.
[19] BISCHOFF K, FIRAN C S, NEJDL W, et al. Can all tags be used for search?[C] //Proceedings of the 17th ACM Conference on Information and Knowledge Management. New York: ACM, 2008: 193-202.
[20] GUO Q, LIU W, LIN Y, et al. Query expansion based on user quality in folksonomy[J]. Information Retrieval Technology, 2012, 7675: 396-405.
[1] 谷 峰,刘晨曦,吴扬扬 . 基于序列数据挖掘的中文网页特征选择方法[J]. J4, 2006, 41(3): 95-99 .
[2] 段 昕,马 军,宋 玲 . 利用分块重要度进行中文网页分类的研究[J]. J4, 2006, 41(3): 108-111 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!