您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (9): 113-120.doi: 10.6040/j.issn.1671-9352.2.2015.228

• • 上一篇    下一篇

综合用户相似性与话题时效性的影响力用户发现算法

祝升,周斌,朱湘   

  1. 国防科技大学计算机学院, 湖南 长沙 410073
  • 收稿日期:2015-10-12 出版日期:2016-09-20 发布日期:2016-09-23
  • 作者简介:祝升(1992— ),男,硕士研究生,研究方向为社交网络分析.E-mail:zhusheng002@126.com
  • 基金资助:
    国家重点基础研究发展计划(973计划)项目(2013CB329600)

EIP: discovering influential bloggers by user similarity and topic timeliness

ZHU Sheng, ZHOU Bin, ZHU Xiang   

  1. School of Computer, National University of Defense Technology, Changsha 410073, Hunan, China
  • Received:2015-10-12 Online:2016-09-20 Published:2016-09-23

摘要: 社交网络服务每天产生大量涉及众多话题的信息,并在影响力各异的用户群体推动下广泛传播。在IP(influence passivity)算法的基础上,提出了一种综合话题相似性与信息时效性的影响力用户发现算法EIP(extended influence-passivity)。该算法在转发网络上考虑用户间话题的相似性以及博文信息时效性,更加精准地建模和计算用户的影响力和消极性。基于新浪微博上爬取的约10万用户数据集上的实验验证,EIP影响力度量算法优于IP和TwitterRank等现有方法。

关键词: 影响力, 消极性, 社交网络, 影响力用户识别

Abstract: Enormous information flowing through Online Social Media nowadays, spreading through hundreds of millions of users with different influence in the network. EIP(extended influence-passivity), an extension of IP(influence passivity)algorithm, is proposed to identify influencers in social network based on users forwarding activity. EIP measures the influence and passivity of users taking both pair wise topical similarity and timeliness feature of information into account. An evaluation performed with about 100 000 user dataset crawled from Sina micro-blog shows that EIP outperforms than other algorithms, including the original IP and TwitterRank.

Key words: social network, passivity, influential blogger identification, influential

中图分类号: 

  • TP393
[1] ROMERO D, GALUBA W, ASUR S, et al.Influence and passivity in social media[J]. Ssrn Electronic Journal, 2010, 6913(1):18-33.
[2] KATZ E. The two-step flow of communication: An up-to-date report on an hypothesis[J]. Public Opinion Quarterly, 1957, 21(1):61-78.
[3] YOUNG H P. The diffusion of innovations in social networks[J]. General Information, 2000, 413(1): 2329-2334.
[4] KITSAK M, GALLOS L, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6(11):888-893.
[5] CHA M, HADDADI H, BENEVENUTO F, et al. Measuring user influence in twitter: the million follower fallacy[C] //Proceedings of the 4th International AAAI Conference on Weblogs and Social Media(ICWSM 2010).[S.l.] :AAAI Press, 2010:10-17.
[6] CATALDI M, CARO L D, SCHIFANELLA C. Emerging topic detection on Twitter based on temporal and social terms evaluation[J]. Preceedings of 10th International Workshop on Multimedia Data Mining. NewYork: ACM, 2010:1-10.
[7] TUNKELANG D. A Twitter analogy to pagerank[EB/OL]. [2015-03-26].http: //thenoisychannel.com/2009/01/13/atwitter-analog-to-pagemark/.
[8] WENG J, LIM E P, JIANG J, et al. TwitterRank: finding topic-sensitive influential twitterers[J]. Proceedings of the 3rd ACM International Conference on Web Search and Data Mining-WSDM 2010.New Yok: ACM, 2010: 261-270.
[9] DING Z, JIA Y, ZHOU B, et al. Mining topical influencers based on the multi relational network in micro-blogging sites[J]. China Communications, 2013, 10(1): 93-104.
[10] KLEINBERG J. Authoritative sources in a hyperlinked environment[J]. Journal of the ACM, 1999, 46(5): 604-632.
[11] 丁兆云, 周斌, 贾焰, 等. 微博中基于多关系网络的话题层次影响力分析[J].计算机研究与发展, 2013, 10: 2155-2175. DING Zhaoyun, ZHOU Bin, JIA Yan, et al. Topic Influence analysis based on the multi-relational network in microblogs[J]. Journal of Computer Research and Development, 2013, 10:2155-2175.
[1] 廖祥文,张凌鹰,魏晶晶,桂林,程学旗,陈国龙. 融合时间特征的社交媒介用户影响力分析[J]. 山东大学学报(理学版), 2018, 53(3): 1-12.
[2] 张中军,张文娟,于来行,李润川. 基于网络距离和内容相似度的微博社交网络社区划分方法[J]. 山东大学学报(理学版), 2017, 52(7): 97-103.
[3] 邓小方,钟元生,吕琳媛,王明文,熊乃学. 融合社交网络的物质扩散推荐算法[J]. 山东大学学报(理学版), 2017, 52(3): 51-59.
[4] 李宇溪,王恺璇,林慕清,周福才. 基于匿名广播加密的P2P社交网络隐私保护系统[J]. 山东大学学报(理学版), 2016, 51(9): 84-91.
[5] 张少群,魏晶晶,廖祥文,简思远,陈国龙. Twitter中的情绪传染现象[J]. 山东大学学报(理学版), 2016, 51(1): 71-76.
[6] 郭浩,陆余良,王宇,张亮. 基于信息传播的微博用户影响力度量[J]. J4, 2012, 47(5): 78-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!