山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (5): 95-103.doi: 10.6040/j.issn.1671-9352.2.2016.169
宁多彪1,牛宪华2,黄平1,王常远1
NING Duo-biao1, NIU Xian-hua2, HUANG Ping1, WANG Chang-yuan1
摘要: 基于d-型函数,提出了两类具有最优周期部分汉明相关的跳频序列的构造方法。研究表明,对于任意相关窗长,新构造的跳频序列都是最优的。
中图分类号:
[1] FAN Pingzhi, DARNELL M. Sequence design for communications applications[J]. Research Studies Press, 1996. [2] GOLOMB S W, GONG G. Signal design for good correlation: For wireless communication, cryptography, and radar[M] // Signal design for good correlation for wireless communication, cryptography, and radar/. Cambridge University Press, 2005: xviii. [3] LEMPEL A, GREENBERGER H. Families of sequences with optimal Hamming-correlation properties[J]. IEEE Transactions on Information Theory, 1974, 20(1):90-94. [4] EUN Y C, JIN S Y, HONG Y P, et al. Frequency hopping sequences with optimal partial autocorrelation properties[J]. Information Theory IEEE Transactions on, 2004, 50(10):2438-2442. [5] ZHOU Zhengchun, TANG Xiaohu, NIU Xinhua, et al. New classes of Frequency-hopping sequences with optimal partial correlation[J]. Information Theory IEEE Transactions on, 2012, 58(1):453-458. [6] NIU Xinhua, PENG Daiyuan, ZHOU Zhengchun. Frequency/time hopping sequence sets with optimal partial Hamming correlation properties[J]. Science China Information Sciences, 2012, 55(10):2207-2215. [7] CAI Han, ZHOU Zhengchun, YANG Yang, et al. A New construction of Frequency-hopping sequences with optimal partial hamming correlation[J]. Information Theory IEEE Transactions on, 2014, 60(9):5782-5790. [8] CAI Han, YANG Yang, ZHOU Zhengchun, et al. Strictly optimal Frequency-hopping sequence sets with optimal family sizes[J]. Information Theory IEEE Transactions on, 2015, 62(2):1087-1093. [9] BAO Jingjun, JI Lijun. Frequency hopping sequences with optimal partial hamming correlation[J]. IEEE Transactions on Information Theory, 2016, 62(6):3768-3783. [10] FAN Cuiling, CAI Han, TANG Xiaohu. A combinatorial construction for strictly optimal Frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2016, 62(8):4769-4774. [11] ZHOU Zhengchun, TANG Xiaohu, PENG Daiyuan, et al. New constructions for optimal sets of Frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2011, 57(6):3831-3840. [12] GONG G, SONG H Y. Two-tuple-balance of non-binary sequences with ideal two-level autocorrelation[J]. 2006, 154(18):2590-2598. |
[1] | . 降低OFDM系统峰均功率比的自适应多级SLM方法[J]. J4, 2009, 44(5): 49-55. |
[2] | 王忠林 姚福安 李祥峰. 基于FPGA的一个超混沌系统设计与电路实现[J]. J4, 2008, 43(12): 93-96. |
|