山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (9): 7-12.doi: 10.6040/j.issn.1671-9352.1.2016.PC7
孙建东,顾秀森,李彦,徐蔚然*
SUN Jian-dong, GU Xiu-sen, LI Yan, XU Wei-ran*
摘要: 实体关系抽取是知识图谱技术的重要环节之一。英文实体关系抽取的研究已经比较成熟,相比之下,中文实体关系抽取的发展却并不理想。由于相关语料的匮乏,中文实体关系抽取的发展受到了一定的限制。针对这一问题,COAE2016在任务三中提出了中文实体关系抽取任务。通过分别使用了基于模板、基于SVM与基于CNN的实体关系抽取算法解决了这一问题,并根据其在COAE2016任务三的评测数据集上的效果,对比分析了三种实体关系抽取算法的优缺点。实验证明,基于SVM的算法和基于CNN的算法均在评测数据集上表现出了良好的效果。
中图分类号:
[1] 徐健,张智雄,吴振新. 实体关系抽取的技术方法综述[J]. 现代图书情报技术, 2008(8): 18-23. XU Jian, ZHANG Zhixiong, WU Zhenxin. Review on techniques of entity relation extraction [J]. New Technology of Library and Information Service, 2008(8):18-23. [2] 毛小丽, 何中市, 邢欣来, 等. 基于特征选择的实体关系抽取[J]. 计算机应用研究, 2012, 29(2):530-532. MAO Xiaoli, HE Zhongshi, XING Xinlai, et al. Entity relation extraction based on feature selection[J]. Application Research of Computers, 2012, 29(2):530-532. [3] 车万翔, 刘挺, 李生. 实体关系自动抽取[J]. 中文信息学报, 2004, 19(2): 1-6. CHE Wanxiang, LIU Ting, LI Sheng. Automatic entity relation extraction [J]. Journal of Chinese Information Processing, 2004, 19(2):1-6. [4] 刘建舟, 邵雄凯. 一种改进的中文实体关系抽取方法[J]. 软件导刊,2011,10(4):27-29. LIU Jianzhou, SHAO Xiongkai. An improved method of chinese entity relation extraction [J]. Software Guide, 2011, 10(4):27-29. [5] 张素香, 文娟, 秦颖, 等. 实体关系的自动抽取研究[J]. 哈尔滨工程大学学报, 2006, 27(S1):370-373. ZHANG Suxiang, WEN Juan, QIN Ying, et al. Study about automatic entity relation extraction [J]. Journal of Harbin Engineering University, 2006, 27(S1):370-373. [6] LECUN Yann, BENGIO Yoshua, HINTON Geoffrey. Deep learning[J]. Nature.2015, 521(7553): 436-444. [7] KRIZHEVSKY Alex SUTSKEVER Ilya, HINTON Geoffrey. ImageNet classification with deep convolutionalneural networks[J]. International Conference on Neural Information Processing Systems, 2012, 25(2):1097-1105. [8] ZHANG Shiliang, LIU Cong, JIANG Hui, et al. Feedforward sequential memory networks:a new structure to learn long-term dependency [J]. Computer Science, 2015, arXiv:1510.02693. [9] BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. Journal of Machine Learning Research, 2014(3):1137-1155. [10] HASHIMOTO K, STENETORP P, MIWA M, et al. Task-oriented learning of word embeddings for semantic relation classification[J]. Computer Science,2015, arXiv: 1503. 00095. [11] HENDRICKX I, KIM S N, KOZAREVA Z, et al. Semeval-2010 task 8: multi-way classification of semantic relations between pairs of nominal[C] //Proceedings of the NAACL HLT Workshop on Semantic Evaluations: Recent Achievements and Future Directions Boulder: Association for Computational Linguistics Stroudsburg, PA, USA, 2009: 94-99. [12] MIKOLOV Tomas, SUTSKEVER Ilya, CHEN Kai, et al. Distributed representations of words and pharses and their coposi-tionality[J].Computer Science, 2013, arXiv:1310.4546. |
[1] | 龚双双,陈钰枫,徐金安,张玉洁. 基于网络文本的汉语多词表达抽取方法[J]. 山东大学学报(理学版), 2018, 53(9): 40-48. |
[2] | 杨艳,徐冰,杨沐昀,赵晶晶. 一种基于联合深度学习模型的情感分类方法[J]. 山东大学学报(理学版), 2017, 52(9): 19-25. |
[3] | 谭红叶,要一璐,梁颖红. 基于知识脉络的科技论文推荐[J]. 山东大学学报(理学版), 2016, 51(5): 94-101. |
|