您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (9): 10-18.doi: 10.6040/j.issn.1671-9352.0.2019.795

• • 上一篇    

e-HR神经元模型分岔分析与同步控制

王红梅,安新磊*,乔帅,张薇   

  1. 兰州交通大学数理学院, 甘肃 兰州 730070
  • 发布日期:2020-09-17
  • 作者简介:王红梅(1995— ),女,硕士研究生,研究方向为非线性动力学. E-mail:1978077670@qq.com*通信作者简介:安新磊(1983— ),男,博士,副教授,研究方向为非线性动力学. E-mail:anxin1983@163.com
  • 基金资助:
    国家自然科学基金资助项目(11962012);甘肃省自然科学基金资助项目(17JR5RA096);兰州交通大学研究生教育改革资助项目(JG201816)

Bifurcation analysis and synchronous control of e-HR neuron model

WANG Hong-mei, AN Xin-lei*, QIAO Shuai, ZHANG Wei   

  • Published:2020-09-17

摘要: 以单个e-HR神经元模型为基础,研究该模型在双参数平面中的分岔特征,以及通过引入磁控忆阻器建立了磁通耦合e-HR神经元模型,并实现同步控制。基于数值模拟发现,e-HR神经元在双参数平面上存在倍周期、逆倍周期、伴有混沌加周期等分岔模式。通过运用自适应控制方法,对从系统施加控制项,使主从系统由混沌态同步到了簇放电态,从而为研究神经元放电模式的产生、迁移和转变提供了有益的探讨。

关键词: 忆阻器, 双参数分岔分析, 磁通耦合e-HR神经元模型, 自适应同步

Key words: memristor, bifurcation analysis with two parameters, magnetic flux coupling e-HR neuron model, adaptive synchronization

中图分类号: 

  • O441
[1] STEINMETZ P N, ROY A, FITZGERALD P J. Attention modulates synchronized neuronal firing in primate somatosensorycortex[J]. Nature, 2000, 404(6774):187-190.
[2] BENNETT M V, ZUKIN R S. Electrical coupling and neuronal synchronization in the mammalian brain[J]. Neuron, 2004, 41(4):495-511.
[3] NGUYEN L H, HONG K S. Adaptive synchronization of two coupled chaotic Hindmarsh-Rose neurons by controlling the membrane potential of a slave neuron[J]. Applied Mathematical Modelling, 2013, 37(4):2460-2468.
[4] 邬开俊, 王春丽, 单亚州. 噪声作用下的化学突触耦合神经元系统的同步[J]. 吉林大学学报(工学版), 2017(5):231-237. WU Kaijun, WANG Chunli, SHAN Yazhou. Synchronization of chemical synaptic coupling neuron system under noise[J]. Journal of Jilin University(Engineering Edition), 2017(5):231-237.
[5] 王天. 耦合神经元系统的放电机理及同步研究[D].兰州:兰州交通大学,2017. WANG Tian. Study on discharge mechanism and synchronization of coupled neuron system[D]. Lanzhou: Lanzhou Jiaotong University, 2017.
[6] BAPTISTA M S, GREBOGI C. Combined effect of chemical and electrical synapses in Hindmarsh-Rose neural networks on synchronization and the rate of information[J]. Physical Review E, 2010, 82(3):036203.
[7] SELVERSTON A I, RABINOVICH M I, ABARBANEL H D. Reliable circuits from irregular neurons: a dynamical approach to understanding central pattern generators[J]. Journal of Physiology Paris, 2000, 94(5):357-374.
[8] 邬开俊.Hindmarsh-Rose神经元模型的双参数分岔特性及耦合同步研究[D]. 兰州:兰州交通大学,2017. WU Kaijun. Bifurcation characteristics and coupling synchronization of Hindmarsh-Rose neuron model[D]. Lanzhou: Lanzhou Jiaotong University, 2017.
[9] HETTIARACHCHI I T, LAKSHMANAN S, BHATTI A. Chaotic synchronization of time-delay coupled Hindmarsh-Rose neurons via nonlinear control[J]. Nonlinear Dynamics, 2016, 86(2):1249-1262.
[10] WANG Xingyuan, REN Xiaoli, ZHANG Yonglei. Full-order and reduced-order optimal synchronization of neurons model with unknown parameters[J]. Acta Physica Sinica, 2012, 61(6):88-94.
[11] ZHANG Qunjiao, LU Junan. Adaptive feedback synchronization of a general complex dynamical network with delayed nodes[J]. International Journal of Distributed Sensor Networks, 2013, 44(4):996-1003.
[12] WU Kaijun, WANG Tiejun, WANG Chunli. Study on electrical synapse coupling synchronization of Hindmarsh-Rose neurons under Gaussian white noise[J]. Neural Computing & Applications, 2018, 30(2):551-561.
[13] MOUJAHID A, D'ANJOU A, TORREALDEA F J, et al. Efficient synchronization of structurally adaptive coupled Hindmarsh-Rose neurons[J]. Chaos, Solitons & Fractals, 2011, 44(11):929-933.
[14] RECH P C. Dynamics in the parameter space of a neuron model[J]. Chinese Physics Letters, 2012, 29(6):060506.
[15] RECH P C. Dynamics of a neuron model in different two-dimensional parameter-spaces[J]. Physics Letters A, 2011, 375(12):1461-1464.
[16] 单亚州.ML神经元耦合模型的同步研究与应用[D].兰州:兰州交通大学,2016. SHAN Yazhou. Synchronization research and application of ML neuron coupling model[D]. Lanzhou: Lanzhou Jiaotong University, 2016.
[17] XU Ying, JIA Ya, MA Jun. Synchronization between neurons coupled by memristor[J]. Chaos, Solitons & Fractals, 2017, 104:435-442.
[1] 乔帅,安新磊,王红梅,张薇. 电磁感应下HR神经元模型的分岔分析与控制[J]. 《山东大学学报(理学版)》, 2020, 55(9): 1-9.
[2] 慕娜娜,安新磊,续浩南. 含两个忆阻器的隐藏吸引子及其Hamilton能量控制[J]. 《山东大学学报(理学版)》, 2019, 54(9): 91-97.
[3] 王长弘,王林山. 基于忆阻器的S-分布时滞随机神经网络的均方指数稳定性[J]. 山东大学学报(理学版), 2016, 51(5): 130-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!