您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (5): 23-25.doi: 10.6040/j.issn.1671-9352.0.2019.389

• • 上一篇    

近完全图的点可区别Ⅰ-全染色及Ⅵ-全染色

张生桂,陈祥恩*   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 发布日期:2021-05-13
  • 作者简介:张生桂(1996— ), 女, 硕士研究生, 研究方向为图论及其应用. E-mail:zhangshenggui1996@163.com*通信作者简介:陈祥恩(1965— ), 男, 教授, 硕士研究生导师, 研究方向为图论及其应用. E-mail:chenxe@nwnu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11761064,61163037)

Vertex-distinguishing Ⅰ-total coloring and Ⅵ-total coloring of almost complete graphs

ZHANG Sheng-gui, CHEN Xiang-en*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2021-05-13

摘要: 图G的一个一般全染色是指使用若干颜色对图G的全部顶点及边的一个分配,如果任意两个相邻点和两条相邻边染以不同颜色,则称为图G的Ⅰ-全染色;如果任意两条相邻边染以不同的颜色,则称为图G的Ⅵ-全染色。图G的一个Ⅰ-全染色(或Ⅵ-全染色)f,若对∠u,v∈V(G), u≠v,都有C(u)≠C(v),其中C(x)表示在f下点x的颜色以及与x关联的边的色所构成的集合,则f称为图G的点可区别的Ⅰ-全染色(或点可区别Ⅵ-全染色),简称为VDIT染色(VDVIT染色)。令χivt(G)=min{k|G存在k-VDIT染色},称χivt(G)为图G的点可区别Ⅰ-全色数。令χvivt(G)=min{k|G存在k-VDVIT染色},称χvivt(G)为图G的点可区别Ⅵ-全色数。利用分析法和反证法,讨论并给出了近完全图的点可区别Ⅰ-全色数和Ⅵ-全色数。

关键词: 完全图, Ⅰ-全染色, 点可区别Ⅰ-全染色, 点可区别Ⅰ-全色数

Abstract: Let G be a simple graph. Suppose f is a general total coloring of graph G(i.e., an assignment of several colors to all vertices and edges of G), if any two adjacent vertices and any two adjacent edges of graph G are assigned different colors, then f is called an Ⅰ-total coloring of a graph G; if any two adjacent edges of G are assigned different colors, then f is called a Ⅵ-total coloring of a graph G. For an Ⅰ-total coloring(or Ⅵ-totalcoloring)f of a graph G, if C(u)≠C(v) for any two distinct vertices u and v of V(G), where C(x) denotes the set of colors of vertex x and the edges incident with x under f, then f is called a vertex distinguishing Ⅰ-total coloring(or vertex distinguishing Ⅵ-total coloring)of G. Let χivt(G)=min{k|G has a k-VDIT coloring}, then χivt(G) is called the VDIT chromatic number of G. Let χvivt(G)=min{k|G has a k-VDVIT coloring}, then χvivt(G) is called the VDVIT chromatic number of G. The VDIT coloring(or VDVIT coloring)of almost complete graphs and the VDIT chromatic number(VDVIT chromatic number)of them has been obtained by using analytical method and proof by contradiction.

Key words: complete graph, Ⅰ-total coloring, vertex-distinguishing Ⅰ-total coloring, vertex-distinguishing Ⅰ-total chromatic number

中图分类号: 

  • O157.5
[1] HARARY F, PLANTHOLT M. The point-distinguishing chromatic index[M]. New York: Wiley Interscience, 1985: 147-162.
[2] HORNAK M, SOTAK R. The fifth jump of the point-distinguishing chromatic index of Kn,n[J]. ARS Combinatoria, 1996, 42:233-242.
[3] CHEN X E. Point-distinguishing chromatic index of the union of paths[J]. Czechoslovak Mathematical Journal, 2014, 64(3):629-640.
[4] CHEN Xiangen, LI Zepeng. Vertex-distinguishing I-total colorings of graphs[J]. Utilitas Mathematica, 2014, 95:319-327.
[5] 苗婷婷,王治文,陈祥恩.圈与路联图点可区别Ⅰ-全染色和点可区别Ⅵ-全染色[J]. 大连理工大学学报,2017,57(4):430-435. MIAO Tingting, WANG Zhiwen, CHEN Xiangen. Vertex-distinguishingⅠ-total colorings and vertex-distinguishing Ⅵ-total colorings of join-graph of cycle and path[J]. Journal of Dalian University of Technology, 2017, 57(4):430-435.
[6] 陈祥恩,苗婷婷,王治文. 两条路的联图的点可区别Ⅰ-全染色[J].山东大学学报(理学版),2017,52(4):30-33. CHEN Xiangen, MIAO Tingting, WANG Zhiwen. Vertex-distinguishing Ⅰ-total colorings of the join of two paths[J]. Journal of Shandong University(Natural Science), 2017, 52(4):30-33.
[1] 袁秀华. 完全图的全符号控制数[J]. J4, 2010, 45(8): 43-46.
[2] 刘海英 马成刚 王志平. 刺图乘积上的Graham猜想[J]. J4, 2009, 44(8): 25-30.
[3] 袁秀华. 图的符号边全控制数[J]. J4, 2009, 44(8): 21-24.
[4] 王文丽,刘西奎,周 薇 . 关于图的广义Mycielski图的邻点可区别关联着色[J]. J4, 2008, 43(10): 77-79 .
[5] 王琦,赵红銮 . Split完全图的最小直径定向[J]. J4, 2006, 41(6): 84-86 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!