您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (1): 101-110.doi: 10.6040/j.issn.1671-9352.0.2021.225

• • 上一篇    

分数阶随机时滞微分方程的波形松弛方法

王苗苗,丁小丽*,李佳敏   

  1. 西安工程大学理学院, 陕西 西安 710048
  • 发布日期:2021-12-21
  • 作者简介:王苗苗(1997—),女,硕士研究生,研究方向为微分方程的基本理论及数值计算方法. E-mail:1025521929@qq.com*通信作者简介:丁小丽(1983— ),女,博士,教授,硕士生导师,研究方向为微分方程的基本理论、数值计算方法及其应用. E-mail:dingding0605@126.com
  • 基金资助:
    陕西省科技厅创新推动人才资助项目(2019KJXX-032)

Waveform relaxation methods for fractional stochastic delay differential equations

WANG Miao-miao, DING Xiao-li*, LI Jia-min   

  1. School of Science, Xian Polytechnic University, Xian 710048, Shaanxi, China
  • Published:2021-12-21

摘要: 研究了分数阶随机时滞微分方程的波形松弛方法。在分裂函数满足Lipschitz条件下,给出波形松弛方法的误差估计,该误差估计说明此方法在均方意义上是收敛的。最后通过几个算例证明了波形松弛方法求解分数阶随机时滞微分方程的有效性,验证了收敛理论的正确性。

关键词: 分数阶随机时滞微分方程, 波形松弛方法, 分裂函数, 均方收敛

Abstract: The waveform relaxation method for fractional stochastic delay differential equations is studied. Under the Lipschitz condition of splitting function, the error estimate of waveform relaxation method is given. The error estimate shows that the method is convergent in mean square sense. Finally, several numerical examples are given to show the effectiveness of the waveform relaxation method for solving fractional stochastic delay differential equations, and the correctness of the convergence theory is verified.

Key words: fractional stochastic delay differential equation, waveform relaxation method, splitting function, mean square convergence

中图分类号: 

  • O241.81
[1] DUNG N T. Fractional stochastic differential equations with applications to finance[J]. Journal of Mathematical Analysis and Applications, 2013, 397(1):334-348.
[2] PEDJEU J C, LADDE G S. Stochastic fractional differential equations: modeling, method and analysis[J]. Chaos, Solitons and Fractals, 2012, 45(3):279-293.
[3] KULISH V V, LAGE J L. Application of fractional calculus to fluid mechanics[J]. Journal of Fluid Engineering, 2002, 124(3):803-806.
[4] BALOCHIAN S, RAJAEE N. Fractional-order optimal control of fractional-order linear vibration systems with time delay[J]. International Journal of System Dynamics Applications, 2018, 7(3):72-93.
[5] BHALEKAR S, DAFTARDAR-GEJJI V. Fractional Bloch equation with delay[J]. Computers and Mathematics with Applications, 2011, 61(5):1355-1365.
[6] 郭蓉.分数阶时滞微分方程的随机平均法[J].山西大学学报(自然科学版), 2019, 42(2):300-306. GUO Rong. Stochastic averaging principle for fractional delay differential equations[J]. Journal of Shanxi University(Nat Sci Ed), 2019, 42(2):300-306.
[7] LUO Danfeng, ZHU Quanxin, LUO Zhiguo. An averaging principle for stochastic fractional differential equations with time-delays[J/OL]. Applied Mathematics Letters, 2020[2021-03-25]. https://doi.org/10.1016/j.aml.2020.106290.
[8] LELARASMEE E, RUEHLI A E, SANGIOVANNI-VINCENTELLI A L. The waveform relaxation method for time-domain analysis of large scale integrated circuits[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1982, 1(3):131-145.
[9] LIU Hongliang, FU Yayun, LI Bailing. Discrete waveform relaxation method for linear fractional delay differential-algebraic equations[J/OL]. Discrete Dynamics in Nature and Society, 2017[2021-03-20]. https://doi.org/10.1155/2017/6306570.
[10] WANG Wansheng, LI Shoufu. Convergence of waveform relaxation methods for neutral delay differential equations[J]. Mathematical and Computer Modelling, 2008, 48(11/12):1875-1887.
[11] JIANG Yaolin, DING Xiaoli. Waveform relaxation methods for fractional differential equations with the Caputo derivatives[J]. Journal of Computational and Applied Mathematics, 2013, 238:51-67.
[12] DING X L, NIETO J J. Analysis and numerical solutions for fractional stochastic evolution equations with almost sectorial operators[J]. Journal of Computational and Nonlinear Dynamics, 2019, 14(9):1-12.
[13] FAN Zhencheng. Waveform relaxation method for stochastic differential equations with constant delay[J]. Applied Numerical Mathematics, 2011, 61(2):229-240.
[14] CONTE D, DAMBROSIO R, PATERNOSTER B. GPU-acceleration of waveform relaxation methods for large differential systems[J]. Numerical Algorithms, 2015, 71(2):293-310.
[15] PODLUBNY I. Fractional differential equations[M]. San Diego: Academic Press, 1999: 63-68.
[16] 周华任,王再奎,刘常昱,等.关于模糊随机过程对Wiener过程的Itô积分[J].模糊系统与数学, 2010, 24(4):136-139. ZHOU Huaren, WANG Zaikui, LIU Changyu, et al. Itô integral of the standard Wiener process fuzzy stochastic process with respect to fuzzy stochastic process[J]. Fuzzy Systems and Mathematics, 2010, 24(4):136-139.
[17] 孙凤庆.Holder不等式再推广的几种形式[J].科学中国人, 2015(11):248-249. SUN Fengqing. Several forms of further generalization of Holder inequality[J]. Scientific Chinese, 2015(11):248-249.
[18] DING Xiaoli, JIANG Yaolin. Semilinear fractional differential equations based on a new integral operator approach[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12):5143-5150.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!