《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (3): 85-88.doi: 10.6040/j.issn.1671-9352.0.2020.102
• • 上一篇
郭纪云1,2,李海燕2,郭锦2,蔡白光2*
GUO Ji-yun1,2, LI Hai-yan2, GUO Jin2, CAI Bai-guang2*
摘要: 设An={a1,a2,…,an}和Bn={b1,b2,…,bn}是2个非增非负整数序列,其中ai≤bi(i=1,2,…,n)。若An及Bn满足a1≥a2≥…≥an且ai=ai+1蕴含bi≥bi+1(i=1,2,…,n-1),则称An和Bn遵从良序。若对于每一个i=1,…,n,都有ai≡bi(mod 2)且存在n阶m-图G,使得ai≤dG(vi)≤bi及dG(vi)≡bi(mod 2),则称序列对(An;Bn)是同奇偶m-可图的,并称G为其一个实现。给出(An;Bn)同奇偶m-可图的一个充分条件,其中An和Bn遵从良序。
中图分类号:
[1] ERDÖS P, GALLAI T. Graphs with prescribed degrees of vertices[J]. Mat Lapok, 1960, 11:24-274. [2] CAI Maochen, DENG Xiaotie, ZANG Wenan. Solution to a problem on degree sequences of graphs[J]. Discrete Mathematics, 2000, 219(1/2/3):253-257. [3] GUO Jiyun, YIN Jianhua. A constructive extension of the characterization on potentially Ks, t-bigraphic pairs[J]. Discussiones Mathematicae Graph Theory, 2017, 37(1):251. [4] LAI Chunhui, HU Lili. Potentially Km-G-graphical sequences: a survey[J]. Czechoslovak Mathematical Journal, 2009, 59(4):1059-1075. [5] 李炯生, 尹建华. 极值图论与度序列[J]. 数学进展, 2004, 33(3):273-283. LI Jiongsheng, YIN Jianhua. Extremal graph theory and degree sequences[J]. Advances in Mathematics, 2004, 33(3):273-283. [6] RAO S B. A survey of the theory of potentially P-graphic and forcibly P-graphic degree sequences[M] //Combinatorics and Graph Theory. Berlin: Springer, 1981: 417-440. [7] GARG A, GOEL A, TRIPATHI A. Constructive extensions of two results on graphic sequences[J]. Discrete Applied Mathematics, 2011, 159(17):2170-2174. [8] LOVÁSZ L. The factorization of graphs: II[J]. Acta Mathematica Academiae Scientiarum Hungaricae, 1972, 23(1/2):223-246. |
[1] | 张敏, 司建国. 推广后的第二类Feigenbaum函数方程的解的新构造性方法[J]. J4, 2011, 46(4): 34-36. |
[2] | 张敏1,王连池2. 第二类Feigenbaum函数方程的一些推广[J]. J4, 2010, 45(6): 56-59. |
|