您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (6): 23-30.doi: 10.6040/j.issn.1671-9352.0.2021.566

• • 上一篇    

S-半群的完备化

刘敏,李玉林   

  1. 长安大学理学院, 陕西 西安 710064
  • 发布日期:2022-06-10
  • 作者简介:刘敏(1984— ),男,博士,副教授,研究方向为格上拓扑学. E-mail:liumin@chd.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11871320);陕西省自然科学基础研究计划(2022JM-032)

Completions of S-semigroups

LIU Min, LI Yu-lin   

  1. School of Sciences, Changan University, Xian 710064, Shaanxi, China
  • Published:2022-06-10

摘要: 引入S-半群的S-半群Quantale完备化的概念,证明S-半群SA的所有S-半群Quantale完备化可以完全被SA对应的幂集S-半群Quantale的相容商所刻画,给出了3种典型的完备化方法。此外,研究了双重剩余S-半群的S-代数完备化,证明了下集S-半群Quantale上最大相容核映射的商是任意双重剩余S-半群的S-代数完备化。

关键词: 序半群, Quantale, S-半群, S-半群Quantale, S-代数

Abstract: The concept of S-semigroup quantale completions for S-semigroups is introduced. It is proved that all S-semigroup quantale completions of an S-semigroup SA can be fully characterized as compatible quotients of the power-set S-semigroup quantale corresponding to SA. Three kinds of classical completion methods are given. Furthermore, S-algebra completions of double residuated S-semigroups are considered. The quotient with respect to the largest compatible nucleus on the down-set S-semigroup quantale is proved to be an S-algebra completion for an arbitrary double residuated S-semigroup.

Key words: partially ordered semigroup, Quantale, S-semigroup, S-semigroup quantale, S-algebra

中图分类号: 

  • O153.1
[1] WARD M. Structure residuation[J]. Annals of Mathematics, 1938, 39(3):558-569.
[2] WARD M, DILWORTH R P. Residuated lattices[J]. Transactions of the American Mathematical Society, 1939, 45(3):335-354.
[3] DILWORTH R P. Non-commutative residuated lattices[J]. Transactions of the American Mathematical Society, 1939, 46(3):426-444.
[4] BIRKHOFF G. Lattice theory[M]. 3rd ed. Providence, Rhode Island: American Mathematical Society, 1967.
[5] 韩胜伟,赵彬. Quantale理论基础[M]. 北京: 科学出版社, 2016. HAN Shengwei, ZHAO Bin. Foundation of Quantale theory[M]. Beijing: Science Press, 2016.
[6] ROSENTHAL K I. Quantales and their applications[M]. New York: Longman Scientific and Technical, 1990.
[7] GIRARD J Y. Linear logic[J]. Theoretical Computer Science, 1987, 50(1):1-101.
[8] EKLUND P, GARCÍA J G, HÖHLE U, et al. Semigroups in complete lattices: Quantales, modules and related topics[M]. Switzerland: Springer, 2018.
[9] 李永明,李志慧. Quantale与互模拟的进程语义[J]. 数学学报(中文版), 1999, 42(2):313-320. LI Yongming, LI Zhihui. Quantales and process semantics of bisimulation[J]. Acta Mathematica Sinica Chinese Series, 1999, 42(2):313-320.
[10] KILP M, KNAUER U, MIKHALEV A V. Monoids, acts and categories(with applications to wreath products and graphs)[M]. New York: De Gruyter, 2000.
[11] ZHANG X, PASEKA J. On injective constructions of S-semigroups[J]. Fuzzy Sets and Systems, 2019, 373:78-93.
[12] SOLOVYOV S A. A representation theorem for Quantale algebras[J]. Contributions to General Algebra, 2008, 18:189-198.
[13] SOLOVYOV S A. From Quantale algebroids to topological spaces: fixed-and variable-basis approaches[J]. Fuzzy Sets and Systems, 2010, 161(9):1270-1287.
[14] DAVEY B A, PRIESTLEY H A. Introduction to lattices and order[M]. 2nd ed. Cambridge: Cambridge University Press, 2002.
[15] ERNÉ M, REICHMAN J Z. Completions for partially ordered semigroups[J]. Semigroup Forum, 1986, 34(1):253-285.
[16] 韩胜伟, 赵彬. 序半群的Quantale完备化[J]. 数学学报(中文版), 2008, 51(6):1081-1088. HAN Shengwei, ZHAO Bin. The quantale completion of ordered semigroup[J]. Acta Mathematica Sinica Chinese Series, 2008, 51(6):1081-1088.
[17] 夏常春,赵彬,韩胜伟. 序半群Quantale完备化的进一步结果[J]. 数学学报(中文版), 2018, 61(5):811-822. XIA Changchun, ZHAO Bin, HAN Shengwei, Some further results on quantale completions of ordered semigroups[J]. Acta Mathematica Sinica Chinese Series, 2018, 61(5):811-822.
[18] RASOULI H. Completion of S-posets[J]. Semigroup Forum, 2012, 85:571-576.
[19] ZHANG X, PASEKA J. The MacNeille completions for residuated S-posets[J]. International Journal of Theoretical Physics, 2021, 60:667-676.
[20] XIA C C, ZHAO B. Sup-algebra completions and injective hulls of ordered algebras [J]. Algebra Universalis, 2018, 79(1):1-10.
[21] 谢祥云. 序半群引论[M]. 北京: 科学出版社, 2001. XIE Xiangyun. Introduction to partially ordered semigroups [M]. Beijing: Science Press, 2001.
[1] 刘妮,张苗苗. 连续定向完备序半群及其范畴性质[J]. 山东大学学报(理学版), 2016, 51(6): 57-64.
[2] 杨闻起. IS-代数的特征数[J]. J4, 2011, 46(4): 53-56.
[3] 田红岩,许新斋*,马静. 关于t-序半群[J]. J4, 2011, 46(3): 78-79.
[4] 杨闻起. IS-代数的伴侣半环[J]. J4, 2011, 46(12): 66-69.
[5] 唐剑1, 谢祥云2. 序半群的完全素和素模糊理想[J]. J4, 2010, 45(8): 93-98.
[6] 毛海英 许新斋 练晓沛. 关于序半群的C-理想[J]. J4, 2010, 45(2): 14-16.
[7] 曹 勇 . 关于线性变换正则序半群的BQ性[J]. J4, 2008, 43(2): 98-100 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!