《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (6): 36-43.doi: 10.6040/j.issn.1671-9352.0.2021.330
• • 上一篇
翁婷婷,魏宗田
WENG Ting-ting, WEI Zong-tian
摘要: 将邻域坚韧度引入赋权图中,提出图的赋权邻域坚韧度概念。在给出一些基本图的赋权邻域坚韧度的基础上,着重研究几类图的赋权邻域坚韧度的极值问题。结果表明,参数值与图的结构、权值大小和赋权方式均有关系,因而能更为准确地刻画网络的抗毁性。
中图分类号:
[1] 魏宗田,刘勇,杨威,等.网络抗毁性[M]. 西安:西安交通大学出版社, 2015. WEI Zongtian, LIU Yong, YANG Wei, et al. Network invulnerability[M]. Xian: Xian Jiaotong University Press, 2015. [2] BONDY J A, MURTY U S R. Graph theory with applications[M]. London: Macmillan Education UK, 1976. [3] BAUER D, BROERSMA H, SCHMEICHEL E. Toughness in graphs: a survey[J]. Graphs and Combinatorics, 2006, 22(1):1-35. [4] WU S S Y, COZZENS M B. The minimum size of critically m-neighbour-connected graphs[J]. ARS Combinatoria, 1990, 29:149-160. [5] 杨静婷. 图的邻域坚韧度研究[D]. 西安: 西安建筑科技大学, 2017. YANG Jingting. A study of vertex neighbor toughness of graphs[D]. Xian: Xian University of Architecture and Technology, 2017. [6] KATONA G Y, VARGA K. Minimally toughness in special graph classes [J]. Discrete Mathematics, 2018. http://arxiv.org/pdf/1802.00055.pdf. [7] KATONA G Y, SOLTÉSZ D, VARGA K. Properties of minimally t-tough graphs[J]. Discrete Mathematics, 2018. http://arxiv.org/pdf/1604.02746.pdf. [8] 马永刚. 图的邻域参数研究 [D]. 大连: 大连海事大学, 2007. MA Yonggang. Research on the neighborhood parameters of graphs [D]. Dalian: Dalian Maritime University, 2007. [9] 张胜贵,李学良,王力工.通信系统抗破坏能力研究[J]. 西北工业大学学报, 2002, 20(1):100-103. ZHANG Shenggui, LI Xueliang, WANG Ligong. Survivability of communication networks[J]. Journal of Northwestern Polytechnical University, 2002, 20(1):100-103. |
[1] | 师铭,魏宗田,刘勇,翁婷婷. 图的顶点赋权邻域粘连度[J]. 《山东大学学报(理学版)》, 2021, 56(5): 26-32. |
[2] | 王 兵 . 拟无爪图的性质[J]. J4, 2007, 42(10): 111-113 . |
[3] | 耿建艳,侯建锋 . 最大度为6且不含5圈或6圈的平面图可8全染色[J]. J4, 2006, 41(5): 55-58 . |
|