《山东大学学报(理学版)》 ›› 2022, Vol. 57 ›› Issue (7): 1-13.doi: 10.6040/j.issn.1671-9352.0.2022.132
• •
史开泉1*,李守伟2
SHI Kai-quan1*, LI Shou-wei2
摘要: 利用内-分离论域、外-分离论域与分离论域,改进了L.A.Zadeh模糊集合,提出了由内-分离模糊集合与外-分离模糊集合共同组成的分离模糊集合。利用分离模糊集合,给出了模糊信息融合的生成及其属性关系;给出了模糊信息融合中的信息筛以及信息筛分准则,进而提出了模糊信息外-融合-智能检索算法;利用这些理论结果,给出了模糊信息外-融合在疾病分类智能检索中的应用。
中图分类号:
[1] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353. [2] ZADEH L A. Probability measures of fuzzy events[J]. Journal of Mathematical Analysis and Applications, 1968, 23(2):421-427. [3] ZADEH L A. Similarity relations and fuzzy orderings[J]. Information Sciences, 1971, 3(2):177-200. [4] 史开泉,崔玉泉. 双枝模糊决策与决策加密-认证[J]. 中国科学E, 2003, 33(2):154-163. SHI Kaiquan, CUI Yuquan. Both-branch fuzzy secision and decision encryption-authentication[J]. Science in China Series E, 2003, 33(2):154-163. [5] SHI K Q, CUI Y Q. Both-branch fuzzy decision and decision encryption-authentication[J]. Science in China: F, 2003, 46(2):90-103. [6] SHI K Q, DAVID K W N G. Computation of fuzzy transitive clasure by S-K-Q-Δ method[J]. The Journal of Fuzzy Mathematics, 1993, 1(1):25-32. [7] 史开泉,汪保明. Fuzzy传递闭包与Fuzzy分类矩阵的S-K-Q判定定理[J]. 模糊系统与数学, 1990, 4(2):92-97. SHI Kaiquan, WANG Baoming. S-K-Q critical theorems for fuzzy transitive closure R* and fuzzy classifying matrix R[J]. Fuzzy Systems and Mathematics, 1990, 4(2):92-97. [8] MOLINA C, RUIZ M D, SERRANO J M. Representation by levels: an alternative to fuzzy sets for fuzzy data mining[J]. Fuzzy Sets and Systems, 2020, 401:113-132. [9] HUITZIL I, BOBILLO F, GÓMEZ-ROMERO J, et al. Fudge: fuzzy ontology building with consensuated fuzzy datatypes[J]. Fuzzy Sets and Systems, 2020, 401:91-112. [10] DALTERIO P, GARIBALDI J M, JOHN R I, et al. Constrained interval type-2 fuzzy sets[J]. IEEE Transactions on Fuzzy Systems, 2020, 29(5):1212-1225. [11] DONG Q, GONG S, ZHU X. Imbalanced deep learning by minority class incremental rectification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(6):1367-1381. [12] MATHEW J, PANG C K, LUO M, et al. Classification of imbalanced data by oversampling in kernel space of support vector machines[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(9):4065-4076. [13] GAO M, HONG X, HARRIS C. Construction of neurofuzzy models for imbalanced data classification[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(6):1472-1488. [14] LIU S, ZHANG J, XIANG Y, et al. Fuzzy-based information decomposition for incomplete and imbalanced data learning[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(6):1476-1490. [15] RAMENTOL E, VLUYMANS S, VERBIEST N, et al. IFROWANN: imbalanced fuzzy-rough ordered weighted average nearest neighbor classification[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(5):1622-1637. [16] RI J H, LIU L, LIU Y, et al. Optimal weighted extreme learning machine for imbalanced learning with differential evolution[J]. IEEE Computational Intelligence Magazine, 2018, 13(3):32-47. [17] MANGASARIAN O, MUSICANT D. Lagrangian support vector machines[J]. Journal of Machine Learning Research, 2001, 1(1):161-177. [18] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural Processing Letters, 1999, 9(3):293-300. [19] TSANG I, KWOK J, CHEUNG P M. Core vector machines: fast SVM training on very large data sets[J]. Journal of Machine Learning Research, 2005, 6(1):363-392. [20] TSANG I W H, KWOK J T Y, ZURADA J M. Generalized core vector machines[J]. IEEE Transactions Neural Networks, 2006, 17(5):1126-1142. [21] TSANG I W H, KOCSOR A, KWOK J T Y. Large-scale maximum margin discriminant analysis using core vector machines[J]. IEEE Transactions Neural Networks, 2008, 19(4):610-623. [22] ANGELOV P P, ZHOU X. Evolving fuzzy-rule-based classifiers from data streams[J]. IEEE Transactions on Fuzzy Systems, 2008, 16(6):1462-1475. [23] LESKI J. An ε-margin nonlinear classifier based on if-then rules[J]. IEEE Transactions on Systems, Man and Cybernetics: B, 2004, 34(1):68-76. [24] LUGHOFER E, BUCHTALA O. Reliable all-pairs evolving fuzzy classifiers[J]. IEEE Transactions on Fuzzy Systems, 2013, 21(4):625-641. [25] YANG X, ZHANG G, LU J, et al. A kernel fuzzy c-means clustering-based fuzzy support vector machine algorithm for classification problems with outliers or noises[J]. IEEE Transactions on Fuzzy Systems, 2011, 19(1):105-115. [26] LESKI J. Fuzzy(c+p)-means clustering and its application to a fuzzy rule-based classifier: towards good generalization and good interpretability[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(4):802-812. [27] HSU C W, LIN C J. A comparison of methods for multiclass support vector machines[J]. IEEE Transactions Neural Networks, 2002, 13(2):415-425. [28] PEDRYCZ W. Fuzzy set technology in knowledge discovery[J]. Fuzzy Sets and Systems, 1998, 98(2):279-290. [29] PEDRYCZ W. Cluster-centric fuzzy modeling[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(6):1585-1597. [30] LESKI J. Fuzzy c-ordered-means clustering[J]. Fuzzy Sets and Systems, 2016, 286(1):114-133. [31] LESKI J M, KOTAS M P. Linguistically defined clustering of data[J]. International Journal of Applied Mathematics and Computer Science, 2018, 28(3):545-557. [32] 史开泉. P-集合[J]. 山东大学学报(理学版), 2008, 43(11):77-84. SHI Kaiquan. P-sets[J]. Journal of Shandong University(Natural Science), 2008, 43(11):77-84. [33] SHI K Q. P-sets and its applications[J]. Advances in Systems Science and Applications, 2009, 9(2):209-219. [34] 史开泉. P-集合, 逆P-集合与信息智能融合-过滤辨识[J]. 计算机科学, 2012, 39(4):1-13. SHI Kaiquan. P-sets, inverse P-sets and the intelligent fusion-filter identification of information[J]. Computer Science, 2012, 39(4):1-13. [35] FAN C X, LIN H K. P-sets and the reasoning-identification of disaster information[J]. International Journal of Convergence Information Technology, 2012, 7(1):337-345. [36] LIN H K, FAN C X. The dual form of P-reasoning and identification of unknown attribute[J]. International Journal of Digital Content Technology and its Applications, 2012, 6(1):121-131. [37] 史开泉, 函数P-集合[J]. 山东大学学报(理学版), 2011, 46(2):62-69. SHI Kaiquan. Function P-sets[J]. Journal of Shandong University(Natural Science), 2011, 46(2):62-69. [38] SHI K Q. Function P-sets[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(4):281-288. [39] TANG J H, ZHANG L, SHI K Q. Outer P-information law reasoning and its application in intelligent fusion and separating of information law[J]. Microsystem Technologies, 2018, 24(10):4389-4398. [40] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Sciences, 1982, 11(5):341-356. [41] 史开泉, 姚炳学. 函数S-粗集与规律辨识[J]. 中国科学F, 2008, 38(4):553-564. SHI Kaiquan, YAO Bingxue. Function S-rough sets and security-authentication of hiding law[J]. Science in China Series F: Information Sciences, 2008, 38(4):553-564. [42] SHI K Q, YAO B X. Function S-rough sets and law identification[J]. Science in China Series F: Information Sciences, 2008, 51(5):499-510. [43] 史开泉, 赵建立. 函数S-粗集与隐藏规律安全认证[J]. 中国科学E, 2008, 38(8):1234-1243. SHI Kaiquan, ZHAO Jianli. Function S-rough sets and security-authentication of hiding law[J]. Scinence in China E, 2008, 38(8):1234-1243. [44] SHI K Q, ZHAO J L. Function S-rough sets and security-authentication of hiding law[J]. Scinence in China F, 2008, 51(7):924-935. [45] WEI W, LIANG J Y. Information fusion in rough set theory: an overview[J]. Information Fusion, 2019, 48(8):107-118. [46] WANG H J, ZHANG Q. Dynamic identification of coal-rock interface based on adaptive weight optimization and multi-sensor information fusion[J]. Information Fusion, 2019, 51(11):114-128. [47] WANG H, XU Z S, ZENG X J. Hesitant fuzzy linguistic term sets for linguistic decision making: current developments, issues and challenges[J]. Information Fusion, 2018, 43(9):1-12. [48] ZHANG S, XU Z S, HE Y. Operations and integrations of probabilistic hesitant fuzzy information in decision making[J]. Information Fusion, 2017, 38(11):1-11. [49] WANG H, XU Z S. Admissible orders of typical hesitant fuzzy elements and their application in ordered information fusion in multi-criteria decision making[J]. Information Fusion, 2016, 29(5):98-104. [50] 史开泉. 大数据结构-逻辑特征与大数据规律[J]. 山东大学学报(理学版), 2019, 54(2):1-29. SHI Kaiquan. Big data structure-logic characteristics and big data law[J]. Journal of Shandong University(Natural Science), 2019, 54(2):1-29. [51] 刘纪芹, 史开泉. 大数据分解-融合及其智能获取[J]. 计算机科学, 2020, 47(6):66-73. LIU Jiqin, SHI Kaiquan. Big data decomposition-fusion and its intelligent acquisition[J]. Computer Science, 2020, 47(6):66-73. [52] 郝秀梅, 史开泉. 大数据智能检索与大数据区块元智能分离[J]. 计算机科学, 2020, 47(11):113-121. HAO Xiumei, SHI Kaiquan. Big data intelligent retrieval and big data block element intelligence separation[J]. Computer Science, 2020, 47(11):113-121. |
[1] | 李颖,胡俊. 基于分布式消息驱动的分层可信密码服务框架[J]. 《山东大学学报(理学版)》, 2020, 55(3): 19-27. |
[2] | 张凌,任雪芳. 数据智能分类与分类智能检索-识别[J]. 《山东大学学报(理学版)》, 2020, 55(10): 7-14. |
[3] | 徐凤生,于秀清,张立华. 信息智能融合与它的P-增广矩阵推理生成[J]. 《山东大学学报(理学版)》, 2019, 54(9): 22-28. |
[4] | 张景晓, 徐凤生. P-集合的属性函数与P-信息融合的属性合取特征及应用[J]. 山东大学学报(理学版), 2015, 50(10): 19-26. |
[5] | 闫立梅,徐凤生. P-信息的属性合取扩展-收缩特征与P-信息的智能发现[J]. 山东大学学报(理学版), 2014, 49(2): 98-103. |
[6] | 张凌1,汤积华1,史开泉2. 内P-信息融合与它的属性合取特征[J]. 山东大学学报(理学版), 2014, 49(2): 93-97. |
[7] | 吴松丽1,2,陈桂友3*. 外-扰动与属性合取收缩规律挖掘-分离[J]. 山东大学学报(理学版), 2014, 49(06): 1-5. |
[8] | 史开泉. 信息规律智能融合与软信息图像智能生成[J]. 山东大学学报(理学版), 2014, 49(04): 1-17. |
[9] | 景旭1,2,3, 何东健1*. 无完全可信PKG身份签名的分层CES方案[J]. J4, 2012, 47(9): 7-14. |
[10] | 周厚勇1,2 , 史开泉2 . 函数S-粗集与F隐形图像生成-辨识[J]. J4, 2009, 44(1): 91-96 . |
[11] | 任雪芳,杜英玲,邱育峰 . S-粗集知识的动态推理与识别[J]. J4, 2008, 43(4): 21-27 . |
[12] | 史开泉 . P-集合[J]. J4, 2008, 43(11): 77-84 . |
[13] | 史开泉,余文琼 . 粗系统与它的粗依赖[J]. J4, 2006, 41(1): 45-51 . |
|