《山东大学学报(理学版)》 ›› 2024, Vol. 59 ›› Issue (1): 35-45.doi: 10.6040/j.issn.1671-9352.4.2022.606
杨梅1,3,4(),邓雯1,张本文2,闵帆1,3,4,*()
Mei YANG1,3,4(),Wen DENG1,Benwen ZHANG2,Fan MIN1,3,4,*()
摘要:
提出了多示例嵌入学习(multi-instance learning, MIL)的实例关联性挖掘与强化算法(multi-instance embedding learning with instance affinity mining and reinforcement, MEMR), 包括3个技术。关联性挖掘技术基于自定义的关联性指标, 首先在负实例空间中选择初始负代表实例集, 然后根据正、负实例间的差异性, 选择初始正代表实例集。关联性强化技术分别评估初始正、负代表实例集与整个实例空间的正负关联性, 获得整体关联性更强的代表实例集。包嵌入技术通过嵌入函数将包转换为单向量进行学习。实验在4类应用领域和7种对比算法上进行。结果表明, MEMR的准确性总体优于其他对比算法, 特别是在图像检索和网页推荐数据集上具有显著优势。
中图分类号:
1 | DIETTERICH T G , LATHROP R H , LOZANO-PEREZ T . Solving the multiple instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89 (1/2): 31- 71. |
2 |
LI Daxiang , ZHANG Yue . Multi-instance learning algorithm based on LSTM for Chinese painting image classification[J]. IEEE Access, 2020, 8, 179336- 179345.
doi: 10.1109/ACCESS.2020.3027982 |
3 | SHARMA Y, SHRIVASTAVA A, EHSAN L, et al. Cluster-to-conquer: a framework for end-to-end multi-instance learning for whole slide image classification[C]//Medical Imaging with Deep Learning. Lübeck: PMLR, 2021: 682-698. |
4 | 王刚, 许信顺. 一种新的基于多示例学习的场景分类方法[J]. 山东大学学报(理学版), 2010, 45 (7): 108- 113. |
WANG Gang , XU Xinshun . A new multi-instance learning method for scene classification[J]. Journal of Shandong University (Natural Science), 2010, 45 (7): 108- 113. | |
5 | YI Lin , ZHANG Honggang . Regularized instance embedding for deep multi-instance learning[J]. Applied Sciences, 2020, 10 (1): 64- 78. |
6 | KUMAR V, CHEMMENGATH S, GUPTA Y, et al. Multi-instance training for question answering across table and linked text[J/OL]. arXiv, 2021. https://arxiv.org/abs/2112.07337. |
7 | YANG Mei, ZENG Wenxi, MIN Fan. Multi-instance embedding learning through high-level instance selection[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Chengdu: Springer, 2022: 122-133. |
8 |
TIAN Yuchi , WANG Jiawei , YANG Wenjie , et al. Deep multi-instance transfer learning for pneumothorax classification in Chest X-Ray images[J]. Medical Physics, 2022, 49 (1): 231- 243.
doi: 10.1002/mp.15328 |
9 |
MANIVANNAN S , COBB C , BURGESS S , et al. Subcategory classifiers for multiple-instance learning and its application to retinal nerve fiber layer visibility classification[J]. IEEE Transactions on Medical Imaging, 2017, 36 (5): 1140- 1150.
doi: 10.1109/TMI.2017.2653623 |
10 | WEI Xiushen , YE Hanjia , MU Xin , et al. Multi-instance learning with emerging novel class[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33 (5): 2109- 2120. |
11 | ZHANG Yalin, ZHOU Zhihua. Multi-instance learning with key instance shift[C]//International Joint Conference on Artificial Intelligence. Melbourne: IJCAI, 2017: 3441-3447. |
12 | XU Xin, FRANK E. Logistic regression and boosting for labeled bags of instances[C]//Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin: Springer, 2004: 272-281. |
13 |
MELKI G , CANO A , VENTURA S . MIRSVM: multi-instance support vector machine with bag representatives[J]. Pattern Recognition, 2018, 79, 228- 241.
doi: 10.1016/j.patcog.2018.02.007 |
14 |
LUAN Tianxiang , LUO Tingjin , ZHUGE Wenzhang , et al. Optimal representative distribution margin machine for multi-instance learning[J]. IEEE Access, 2020, 8, 74864- 74874.
doi: 10.1109/ACCESS.2020.2988764 |
15 | CHIKONTWE P, KIM M, NAM S J, et al. Multiple instance learning with center embeddings for histopathology classification[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Lima: Springer, 2020: 519-528. |
16 | YANG Mei , ZHANG Yuxuan , WANG Xizhao , et al. Multi-instance ensemble learning with discriminative bags[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 52 (9): 5456- 5467. |
17 |
AMORES J . Multiple instance classification: review, taxonomy and comparative study[J]. Artificial Intelligence, 2013, 201, 81- 105.
doi: 10.1016/j.artint.2013.06.003 |
18 | WEI Xiushen, WU Jianxin, ZHOU Zhihua. Scalable multi-instance learning[C]//International Conference on Data Mining. Shenzhen: IEEE, 2014: 1037-1042. |
19 |
ZHANG Minling , ZHOU Zhihua . Multi-instance clustering with applications to multi-instance prediction[J]. Applied Intelligence, 2009, 31 (1): 47- 68.
doi: 10.1007/s10489-007-0111-x |
20 |
CHEN Yixin , BI Jinbo , WANG J Z . MILES: multiple-instance learning via embedded instance selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (12): 1931- 1947.
doi: 10.1109/TPAMI.2006.248 |
21 | LI Wujun . MILD: multiple-instance learning via disambiguation[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22 (1): 76- 89. |
22 | HONG Richang , WANG Meng , GAO Yue , et al. Image annotation by multiple-instance learning with discriminative feature mapping and selection[J]. IEEE Transactions on Cybernetics, 2013, 44 (5): 669- 680. |
23 |
WEI Xiushen , WU Jianxin , ZHOU Zhihua . Scalable algorithms for multi-instance learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28 (4): 975- 987.
doi: 10.1109/TNNLS.2016.2519102 |
24 |
WU Jia , PAN Shirui , ZHU Xingquan , et al. Multi-instance learning with discriminative bag mapping[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30 (6): 1065- 1080.
doi: 10.1109/TKDE.2017.2788430 |
25 | ZHANG Weijia, LI Jiuyong, LIU Lin. Robust multi-instance learning with stable instances[J/OL]. arXiv, 2019. https://arxiv.org/pdf/1902.05066.pdf. |
26 | FU Zhouyu , ROBLES-KELLY A , ZHOU Jun . MILIS: multiple instance learning with instance selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33 (5): 958- 977. |
27 |
MIN Fan , ZHANG Shiming , CIUCCI D , et al. Three-way active learning through clustering selection[J]. International Journal of Machine Learning and Cybernetics, 2020, 11 (5): 1033- 1046.
doi: 10.1007/s13042-020-01099-2 |
28 | ANDREWS S , TSOCHANTARIDIS I , HOFMANN T . Support vector machines for multiple-instance learning[J]. Neural Information Processing Systems, 2002, 14, 561- 568. |
29 |
DECENCIERE E , ZHANG Xiwei , CAZUGUEL G , et al. Feedback on a publicly distributed image database: the Messidor database[J]. Image Analysis and Stereology, 2014, 33 (3): 231- 234.
doi: 10.5566/ias.1155 |
30 |
KANDEMIR M , HAMPRECHT F A . Computer-aided diagnosis from weak supervision: a benchmarking study[J]. Computerized Medical Imaging and Graphics, 2015, 42, 44- 50.
doi: 10.1016/j.compmedimag.2014.11.010 |
31 | ZHOU Zhihua, SUN Yuyin, LI Yufeng. Multi-instance learning by treating instances as non-iid samples[C]//Proceedings of the 26th Annual International Conference on Machine Learning. Montreal: ACM, 2009: 1249-1256. |
32 | XU Bicun, TING Kaiming, ZHOU Zhihua. Isolation set-kernel and its application to multi-instance learning[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Anchorage: ACM, 2019: 941-949. |
33 | DEMSAR J . Statistical comparisons of classifiers over multiple data sets[J]. The Journal of Machine Learning Research, 2006, 7, 1- 30. |
[1] | 杨梅,柯文静,王丹东. 多示例学习的可行域定位及快速因果实例选择[J]. 《山东大学学报(理学版)》, 2023, 58(9): 105-113, 126. |
[2] | 王刚,许信顺*. 一种新的基于多示例学习的场景分类方法[J]. J4, 2010, 45(7): 108-113. |
|