《山东大学学报(理学版)》 ›› 2025, Vol. 60 ›› Issue (5): 93-99.doi: 10.6040/j.issn.1671-9352.0.2023.287
• • 上一篇
杨继真1,2,王云鹏3*
YANG Jizhen1,2, WANG Yunpeng3*
摘要: 以广义调和数为桥梁,利用级数变换等方法建立若干含有中心二项式系数、Catalan数及Bernoulli数的同余式,并推广了一些已有结果。
中图分类号:
[1] PAN Hao, SUN Zhiwei. A combinatorial identity with application to Catalan numbers[J]. Discrete Mathematics, 2006, 306(16):1921-1940. [2] SUN Zhiwei, TAURASO R. New congruences for central binomial coefficients[J]. Advances in Applied Mathematics, 2010, 45(1):125-148. [3] SUN Zhiwei. Super congruences and Euler numbers[J]. Science China Mathematics, 2011, 54(12):2509-2535. [4] MAO Guoshuai, SUN Zhiwei. New congruences involving products of two binomial coefficients[J]. The Ramanujan Journal, 2019, 49(2):237-256. [5] MAO Guoshuai. On sums of binomial coefficients involving Catalan and Delannoy numbers modulo p2[J]. The Ramanujan Journal, 2018, 45(2):319-330. [6] RODRIGUEZ-VILLEGAS F. Hypergeometric families of Calabi-Yau manifolds[C] //Proceedings of the Calabi-Yau Varieties and Mirror Symmetry. Toronto: American Mathematical Society, 2003:223-231. [7] MORTENSON E. A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hypergeometric function[J]. Journal of Number Theory, 2003, 99(1):139-147. [8] VAN HAMME L. Some conjectures concerning partial sums of generalized hypergeometric series[J]. Lecture Notes in Pure and Applied Mathematics, 1997, 192:223-236. [9] SWISHER H. On the supercongruence conjecture of van Hamme[J]. Research in the Mathematical Sciences, 2015, 2(1):1-21. [10] HE Bing. Some congruences on harmonic numbers and binomial sums[J]. Periodica Mathematica Hungarica: Journal of the Janos Bolyai Mathematical Society, 2017, 74(1):67-72. [11] GUO Junwei. A q-analogue of the(1.2)supercongruence of Van Hamme[J]. International Journal of Number Theory, 2019, 15(1):29-36. [12] GLAISHER J W L. On the residues of the sums of products of the first p-1 numbers, and their powers, to modulus p2 or p3[J]. Quarterly Journal of Mathematics, 1900, 31:321-353. [13] LEHMER E. On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson[J]. Ann of Math, 1938, 39(2):350-360. [14] MORLEY F. Note on the congruence 24n≡(-1)n(2n)!/(n!)2, where(2n+1)is a prime[J]. Annals of Mathematics, 1895, 9:168-170. |
[1] | 孙毅1,苏贵福2. 源自赋权 2-Motzkin 路的组合恒等式及其应用[J]. J4, 2012, 47(6): 90-94. |
|