您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2011, Vol. 46 ›› Issue (4): 4-8.

• 论文 • 上一篇    下一篇

平面图的邻点可区别全染色

李泽鹏1,王治文2, 陈祥恩1*   

  1. 1.西北师范大学数学与信息科学学院, 甘肃 兰州 730070;
    2.宁夏大学数学计算机学院, 宁夏 银川 750021
  • 收稿日期:2009-09-28 发布日期:2011-04-21
  • 通讯作者: 陈祥恩(1965- ),男,教授,硕士,硕士研究生导师,研究方向为图的染色理论与图的代数理论. Email: chenxe@nwnu.edu.cn
  • 作者简介:李泽鹏(1987- ),男,硕士,研究方向为图论及其应用. Email: wyzl-lzp@163.com
  • 基金资助:

    国家自然科学基金资助项目(10771091); 宁夏大学科学研究基金((E):ndzr10-7)

Adjacent-vertex-distinguishing total coloring of planar bipartite graphs

LI Ze-peng1, WANG Zhi-wen2, CHEN Xiang-en1*   

  1. 1. College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, Gansu, China;
    2. School of Mathematics and Computer Science, Ningxia University, Yinchuan 750021, Ningxia, China
  • Received:2009-09-28 Published:2011-04-21

摘要:

图G的一个正常全染色f 称为是邻点可区别的, 如果G中任何相邻点的点及其关联边的颜色集合不同。 对一个图G进行邻点可区别的正常全染色所用最少颜色数称为G的邻点可区别全色数, 记为χat(G)。 证明了χat(G)≤Δ(G)+2对任意的Δ(G)≥11且围长至少为4的平面图G成立。

关键词: 图; 平面图; 邻点可区别全染色; 邻点可区别全色数

Abstract:

A proper total coloring of G is an adjacent vertex distinguishing total coloring if for any two adjacent vertices, the sets of colors appearing on the vertex and incident edges are different. The smallest number of color of which such a coloring of G exists is called the adjacent vertex distinguishing total chromatic number, and is denoted by χat(G). It is proved that χat (G)≤Δ(G)+2 for any planar bipartite graph G with maximum degree Δ(G) at least 11 and grith at least 4.

Key words:  graphs; planar bipartite graphs; adjacent-vertex-distinguishing total coloring; adjacent-vertex-distinguishing total chromatic number

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!