您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2011, Vol. 46 ›› Issue (11): 101-104.

• 数学 • 上一篇    下一篇

超有效解的广义高阶最优性条件

朱琴,徐义红*,汪涛   

  1. 南昌大学数学系, 江西 南昌 330031
  • 收稿日期:2010-12-06 出版日期:2011-11-20 发布日期:2011-11-30
  • 通讯作者: 徐义红(1969- ),男,博士,教授,研究方向为多目标规划. Email: xuyihong@ncu.edu.cn
  • 作者简介:朱琴(1985- ),女,硕士研究生,主要从事多目标规划研究. Email: zhuqin890909@163.com
  • 基金资助:

    国家自然科学基金资助项目(10461007);江西省自然科学基金资助项目(2009GZS0021);江西省教育厅科技项目(GJJ09069)

A generalized higher-order optimality condition for super efficient solutions

ZHU Qin, XU Yi-hong*, WANG Tao   

  1. Department of Mathematics, Nanchang University, Nanchang 330031, Jiangxi, China
  • Received:2010-12-06 Online:2011-11-20 Published:2011-11-30

摘要:

在实赋范线性空间中考虑集值优化问题的超有效解。对于一个具体集合通过直接计算求得了它的超有效点集。在没有任何凸性假设下,借助于Henig扩张锥,给出了集值优化问题取得超有效解的广义高阶导数型的必要条件。

关键词: 超有效解;广义m阶切导数;集值优化

Abstract:

The super efficient solution of set-valued optimization is considered in real normed spaces. For a specific set, its super efficient points set is obtained by direct calculation. Without any convexity assumption, by employing Henig dilating cone, the generalized higher-order derivative necessary condition is established for set-valued optimization problem to attain its super efficient solutions.

Key words: super efficient solution; generalized mth-order contingent derivative; set-valued optimization

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!