您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (08): 51-56.doi: 10.6040/j.issn.1671-9352.0.2014.372

• 论文 • 上一篇    下一篇

转移函数保半环赋值代数轮廓解的条件

许格妮1,2, 李永明1   

  1. 1. 陕西师范大学数学与信息科学学院, 陕西 西安 710119;
    2. 西安财经学院统计学院, 陕西 西安 710100
  • 收稿日期:2014-08-17 出版日期:2015-08-20 发布日期:2015-07-31
  • 通讯作者: 李永明(1966- ), 男, 教授, 研究方向为计算智能、量子计算. E-mail:liyongm@snnu.edu.cn E-mail:liyongm@snnu.edu.cn
  • 作者简介:许格妮(1978- ), 女, 讲师, 研究方向为信息代数,不确定推理. E-mail:geniwork@163.com
  • 基金资助:
    国家自然科学基金资助项目(11271237,11301321); 陕西省自然科学基金资助项目(2014JQ9372)

On conditions for transfer function to preserve solution configuration of semiring-induced valuation algebras

XU Ge-ni1,2, LI Yong-ming1   

  1. 1. School of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710119, Shaanxi, China;
    2. School of Statistics, Xi'an University of Finance and Economics, Xi'an 710100, Shaanxi, China
  • Received:2014-08-17 Online:2015-08-20 Published:2015-07-31

摘要: 对转移映射保半环诱导的赋值代数的轮廓解的问题进行了研究.得到若转移映射f是一个反保序的半环同态,则f是保轮廓解的.如果两个半环间的一个转移映射f 是单调的,则若原赋值与转移后对应的新赋值的轮廓解都非空,则一定存在一个轮廓x0,它是新赋值的轮廓解,也是原赋值的轮廓解,即x0CφC.

关键词: 赋值代数, 轮廓解, 转移映射, 半环

Abstract: The map preserving solution configuration of valuation algebra induced by a semiring is studied. The transfer function f preserves solution configuration is obtained if f is an order-reflecting semiring homomorphism. In addition, if the transfer function f is monotonous, then there exists a solution configuration x0of the new valuation such that x0 is also a solution configuration of the primal valuation when the set of solution configuration of the two valuations are not empty.

Key words: valuation algebra, semiring, optimal solution, transfer function

中图分类号: 

  • O153.3
[1] KOHLAS J. Information algebras: generic structures for inference[M]. New York: Springer-Verlag, 2003.
[2] POULY M. A generic framework for local computation[D]. Switzerland: University of Fribourg, 2008.
[3] GUAN Xuechong, Li Yongming. On two types of continuous information algebras[J]. International Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 2012, 20(5):654-671.
[4] KOHLAS J,WILSON N. Semiring induced valuation algebras: exact and approximate local computation algorithms[J]. Artificial Intelligence, 2008, 172:1360-1399.
[5] 管雪冲. 赋值代数中若干问题的研究[D]. 西安:陕西师范大学, 2011. GUAN Xuechong. The study of some questions about valuation algebra[D]. Xi'an: Shaanxi Normal University, 2011.
[6] LI Sanjiang, YING Mingsheng. Soft constraint abstraction based on semiring homomorphism[J]. Theoretical Computer Science, 2008, 403:192-201.
[7] GUAN Xuechong, LI Yongming, FENG Feng. A new order relation on fuzzy soft sets and its application[J]. Soft Computing, 2013, 17(1):63-70.
[8] GUAN Xuechong. On a condition for semirings to induce compact information algebras[J]. Electronic Notes in Theoretical Computer Science, 2014, 301:39-48.
[1] 张后俊, 储茂权. 交换半环上半线性空间的维数[J]. 山东大学学报(理学版), 2015, 50(06): 45-52.
[2] 杨闻起. IS-代数的伴侣半环[J]. J4, 2011, 46(12): 66-69.
[3] 王凌云. 半环上的分配格同余[J]. J4, 2009, 44(9): 63-65.
[4] 刘红星 . 商半环的强分配格[J]. J4, 2006, 41(6): 43-45 .
[5] 刘红星 . 半环的局部化[J]. J4, 2006, 41(2): 31-33 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!