山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (11): 91-97.doi: 10.6040/j.issn.1671-9352.0.2015.167
李琳, 张焕水
LI Lin, ZHANG Huan-shui
摘要: 在系统矩阵和输入矩阵满足某种条件的前提下,给出了系统可镇定的充要条件及镇定系统的反馈控制器设计。使用的方法是基于系统简化,把原问题转化成等价的无时滞系统的镇定性问题。
中图分类号:
[1] KOLMANOVSKII V B, MYSHKIS A. Introduction to the theory and applications of functional differential equations[M]. Dordrecht:Kluwer Academy, 1999. [2] ROSS D W, FlVGGE-LOTZ I. An optimal control problem for systems with differential-difference equation dynamics[J]. SIAM Journal on Control, 1969, 7(4):609-623. [3] KOIVO H N, LEE E B. Controller synthesis for linear systems with retarded state and control variables and quadratic cost[J]. Automatica, 1972, 8(2):203-208. [4] ZHANG Huanshui, DUAN Guangren, XIE Lihua. Linear quadratic regulation for linear time-varying systems with multiple input delays[J]. Automatica, 2006, 42(9):1465-1476. [5] LIU Chongyang, LOXTON R, TEO K L. A computational method for solving time-delay optimal control problems with free terminal time[J]. Systems & Control Letters, 2014, 72:53-60. [6] CHOI H H, CHUNG M J. Memoryless H∞ controller design for linear systems with delayed state and control[J]. Automatica, 1995, 31(6):917-919. [7] TADMOR G. The standard H∞ problem in systems with a single input delay[J]. IEEE Transactions on Automatic Control, 2000, 45(3):382-397. [8] TADMOR G, MIRKIN L. H∞ control and estimation with preview-part II:fixed-size ARE solutions in discrete time[J]. IEEE Transactions on Automatic Control, 2005, 50(1):29-40. [9] KRASOVSKII N N. Stability of motion[M]. Stanford CA:Stanford University Press, 1963. [10] GU Keqin. Discretization schemes for Lyapunov-Krasovskii functionals in time delay systems[J]. Kybernetica, 2001, 37(4):479-504. [11] NICULESCU S I. Delay effects on stability:a robust control approach[M]. Berlin:Springer, 2001. [12] ZHAO Xudong, ZHANG Lixian, SHI Peng. Stability of a class of switched positive linear time-delay systems[J]. International Journal of Robust and Nonlinear Control, 2013, 23(5):578-589. [13] OLBROT A W. Stabilizability, detectability, and spectrum assignment for linear autonomous systems with general time delays[J]. IEEE Transactions on Automatic Control, 1978, AC-23(5):887-890. [14] WATANABE K, ITO M. A process-mode control for linear systems with delay[J]. IEEE Transactions on Automatic Control, 1981, AC-26(6):1261-1269. [15] KWON W H, PEARSON A E. Feedback stabilization of linear systems with delayed control[J]. IEEE Transactions on Automatic Control, 1980, AC-25(2):266-269. [16] ARTSTEIN Z. Linear systems with delayed controls:a reduction[J]. IEEE Transactions on Automatic Control, 1982, AC-27(4):869-879. [17] ZHOU Bin. Stabilization of discrete-time systems with multiple actuator delays and saturations[J]. IEEE Transactions on Circuits and SystemsⅠ:Regular Papers, 2013, 60(2):389-400. [18] JI Kun. Real-time control over networks[D]. Texas:A & M University, 2006. [19] IONETE C, CELA A, GAID M B. Controllability and observability of input/output delayed discrete systems[C]//Proceedings of the 2006 American Control Conference, 2006:3513-3518. [20] HAUTUS M L J. Stabilization controllability and observability of linear autonomous systems[C]//Indagationes Mathematicae, 1970, 32:448-455. [21] 郑大钟.线性系统理论[M].2版.北京:清华大学出版社,2002. ZHENG Dazhong. Linear system theory[M]. 2nd ed. Beijing:Press of Tsinghua University, 2002. |
[1] | 高荣,张焕水. 离散时间多输入时滞随机系统的镇定性[J]. 山东大学学报(理学版), 2017, 52(4): 105-110. |
[2] | 谭成,张焕水. 具有输入时滞的离散时间随机系统Lyapunov镇定性条件[J]. 山东大学学报(理学版), 2016, 51(5): 114-120. |
|