山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (11): 32-39.doi: 10.6040/j.issn.1671-9352.0.2014.586
李向良1, 孙艳阁2, 李英2
LI Xiang-liang1, SUN Yan-ge2, LI Ying2
摘要: 考察了多种表面活性剂溶液生成的二氧化碳水基泡沫的稳定性,发现十二烷基硫酸钠(SDS)稳定二氧化碳泡沫的效果比较突出。以SDS与脂肪醇聚氧乙烯醚硫酸钠(AES)体系对比,采用分子动力学模拟方法研究泡沫体系中二氧化碳分子的增溶、扩散等行为以及泡沫液膜中表面活性剂的界面排布规律,并采用FT-IR探测二氧化碳透过泡沫液膜的透过性。实验结果与模拟结果吻合,表明二氧化碳气体分子可增溶在泡沫液膜上表面活性剂疏水链间,并与水分子有相互作用,可渗透进入泡沫液膜,在泡沫液膜内增溶,因此二氧化碳分子透过液膜的扩散能力强,泡沫聚并破灭速度加快。SDS分子疏水链在泡沫液膜界面层内排列致密,液膜内二氧化碳增溶量小,二氧化碳分子透过SDS泡沫液膜的扩散速度较慢,因此泡沫稳定性好。
中图分类号:
[1] PAULSON O, PUGH R J. Flotation of inherently hydrophobic particles in aqueous solutions of inorganic electrolytes[J]. Langmuir, 1996, 12(20):4808-4813. [2] BINKS B P. Particles as surfactants-similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1):21-41. [3] FARAJZADEH R, ANDRIANOV A, ZITHA P L. Investigation of immiscible and miscible foam for enhancing oil recovery[J]. Industrial & Engineering Chemistry Research, 2009, 49(4):1910-1919. [4] WALKER P L. SPIE's International symposium on optical science, engineering, and instrumentation[C]. San Diego:International Society for Optics and Photonics, 1998. [5] SEKI N. Baek-Me1ting of a horizonta1 c1oudy ice layer with radiative heating[J]. Journal of Heat Transfer, 1979, 101(1):90-95. [6] YANG Yonglai, GUPTA M C. Novel carbon nanotube polystyrene foam composites for electromagnetic interference shielding[J]. Nano Lett, 2005, 5(11):2131-2134. [7] BALL G J, EAST R A. Shock and blast attenuation by aqueous foam barriers:influences of barrier geometry[J]. Shock Waves, 1999, 9(1):37-47. [8] MA G W, YE Z Q. Analysis of foam claddings for blast alleviation[J]. International Journal of Impact Engineering, 2007, 34(1):60-70. [9] NGUYEN P, FADAEI H, SINTON D. Pore-scale assessment of nanoparticle-stabilized CO2 foam for enhanced oil recovery[J]. Energy & Fuels, 2014, 28(10):6221-6227. [10] 颜五和,谢尚贤,韩培慧. 泡沫与泡沫驱油[J].油田化学,1990,7(4):380-385. YAN Wuhe, XIE Shangxian, HAN Peihui. On foam and foam flooding[J]. Oilfield Chemistry, 1990, 7(4):380-385. [11] 刘伟,董胜祥,曹子龙. 泡沫洗井工艺的研究及应用[J].钻采工艺, 2002, 25(2):45-48. LIU Wei, DONG Shengxiang, CAO Zilong. Research and application of foam well flooding technology[J]. Drilling & Production Technology, 2002, 25(2):45-48. [12] ZHU T, OGBE D O, KHATANIAR S. Improving the foam performance for mobility control an improved sweep efficiency in gas flooding[J]. Industrial & Engineering Chemistry Research, 2004, 43(15):4413-4421. [13] HOLLOWAY S. Underground sequestration of carbon dioxide-a viable greenhouse gas mitigation option[J]. Energy, 2005, 30(11):2318-2333. [14] ROSSEN W R. Foams in Enhanced Oil Recovery[M]//PRUD'HOMME R K, KHAN S, FOAMs.Theory, measurements and applications. New York:CRC Press, 1996. [15] JESSEN K, KOVSCEK A R, ORR F M. Increasing CO2 storage in oil recovery[J]. Energy Conversion and Management, 2005, 46(2):293-311. [16] FARAJZADEH R, ANDRIANOV A, BRUINING H. Comparative study of CO2 and N2 foams in porous media at low and high pressure temperatures[J]. Industrial & Engineering Chemistry Research, 2009, 48(9):4542-4552. [17] FRIED A N. The foam-drive process for increasing the recovery of oil[M]. Washington:US Department of the Interior, Bureau of Mines, 1961. [18] BOUD D C, Holbrook O C. Gas drive oil recovery process:Washington, DC:U.S. Patent and Trademark Office, Patent No. 2, 866, 507[P].1958. [19] KOEHLER S A, HILGENFELDT S, STONE H A. A generalized view of foam drainage:experiment and theory[J]. Langmuir, 2000, 16(15):6327-6341. [20] BHATTACHARYYA A, MONROY F, LANGEVIN D. Surface rheology and foam stability of mixed surfactant-polyelectrolyte solutions[J]. Langmuir, 2000, 16(23):8727-8732. [21] LI Chunxiu, LI Ying, YUAN Rui. Study of the microcharacter of ultrastable aqueous foam stabilized by a kind of flexible connecting bipolar-headed surfactant with existence of magnesium ion[J]. Langmuir, 2013, 29(18):5418-5427. [22] KHALID E K, BABIKER E E, TINAY A H E L. Solubility and functional properties of sesame seed proteins as influenced by ph and/or salt concentration[J]. Food Chemistry, 2003, 82(3):361-366. [23] FARAUDO J, BRESME F. Anomalous dielectric behavior of water in ionic newton black films[J]. Physical Review Letters, 2004, 92(23):236102. [24] FARAUDO J. The missing link between the hydration force and interfacial water:evidence from computer simulations[J]. Current Opinion in Colloid & Interface Science, 2011, 16(6):557-560. [25] HU Xiaoying, LI Ying, HE Xiujuan. Structure behavior property relationship study of surfactants as foam stabilizers explored by experimental and molecular simulation approaches[J]. The Journal of Physical Chemistry B, 2012, 116(1):160-167. [26] BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. Effect of support pretreatments on carbon-supported iron particles[J]. Journal of Physical Chemistry, 1987, 91(24):6257-6269. [27] GAMBA Z, HAUTMAN J, SHELLY J C. Molecular dynamics investigation of a Newtonian black film[J]. Langmuir, 1992, 8(12):3155-3160. [28] SUN H, REN P, FRIED J R. The COMPASS force field:parameterization and validation for phosphazenes[J]. Computational and Theoretical Polymer Science, 1998, 8(1):229-246. [29] VERLET L, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules[J]. Physical Review, 1967, 159(1):98-103. [30] NOSE S. A Unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of chemical physics,1984, 81(1):511-519. [31] HOOVER W G. Canonical dynamics:equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3):1695-1697. [32] LV Weiqin, LI Ying, LI Yaping. Ultra-stable aqueous foam stabilized by water-soluble alkyl acrylate crosspolymer[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 457:189-195. |
[1] | 刘少杰 迟卫东 陆玮洁 李真. 类脂液晶中PC对MO构象影响及释放行为[J]. J4, 2010, 45(1): 10-16. |
|