您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (11): 32-39.doi: 10.6040/j.issn.1671-9352.0.2014.586

• 论文 • 上一篇    下一篇

CO2水基泡沫的稳定机理研究

李向良1, 孙艳阁2, 李英2   

  1. 1. 中石化胜利油田地质科学研究院采收率室, 山东 东营 257015;
    2. 山东大学化学与化工学院, 山东 济南 250100
  • 收稿日期:2014-12-26 修回日期:2015-06-27 出版日期:2015-11-20 发布日期:2015-12-09
  • 通讯作者: 李英(1970-),女,博士,教授,研究方向为胶体与界面化学基本理论及应用.E-mail:yingli@sdu.edu.cn E-mail:yingli@sdu.edu.cn
  • 作者简介:李向良(1966-),男,高级工程师,从事三次采油化学驱研究工作.E-mail:Lixiangliang.slyt@sinopec.com
  • 基金资助:
    国家自然科学基金资助项目(21173134,21473103);国家科技重大专项基金资助项目(2008ZX05011)

Study of the stability of the CO2 aqueous foam

LI Xiang-liang1, SUN Yan-ge2, LI Ying2   

  1. 1. Geological Scientific Research Institute, Shengli Oilfield, Dongying 257015, Shandong, China;;
    2. Key Lab for Colloid and Interface Chemistry of State Education Ministry, Shandong University, Jinan 250100, Shandong, China
  • Received:2014-12-26 Revised:2015-06-27 Online:2015-11-20 Published:2015-12-09

摘要: 考察了多种表面活性剂溶液生成的二氧化碳水基泡沫的稳定性,发现十二烷基硫酸钠(SDS)稳定二氧化碳泡沫的效果比较突出。以SDS与脂肪醇聚氧乙烯醚硫酸钠(AES)体系对比,采用分子动力学模拟方法研究泡沫体系中二氧化碳分子的增溶、扩散等行为以及泡沫液膜中表面活性剂的界面排布规律,并采用FT-IR探测二氧化碳透过泡沫液膜的透过性。实验结果与模拟结果吻合,表明二氧化碳气体分子可增溶在泡沫液膜上表面活性剂疏水链间,并与水分子有相互作用,可渗透进入泡沫液膜,在泡沫液膜内增溶,因此二氧化碳分子透过液膜的扩散能力强,泡沫聚并破灭速度加快。SDS分子疏水链在泡沫液膜界面层内排列致密,液膜内二氧化碳增溶量小,二氧化碳分子透过SDS泡沫液膜的扩散速度较慢,因此泡沫稳定性好。

关键词: 二氧化碳水基泡沫, 界面排布行为, 泡沫稳定性, FT-IR

Abstract: The stability of carbon dioxide (CO2) water-based foam stablized by surfactants was detected. It was found that sodium dodecyl sulfate (SDS) have apparently better stabilization capacity for the CO2 foam. The molecular array behavior of CO2 and surfactant molecules in foam films was investigated by molecular dynamics simulation. A kind of bipolar-headed surfactant alkyl polyoxyethylene sulfate (AES) having the same alkyl chain and negative charged head group with SDS was investigated as a comparison system, to find out how the microcharacter and array behavior of molecules in the foam films determined by molecular interaction and CO2 effect the foam stability. It was found that the carbon dioxide could not only distribute in the tail chains of surfactant molecules in gas/water interface, but also have interactions with water molecules distributed near the head groups of surfactants, which resulted in two effects of aspect:one is the increase of the chance that carbon dioxide molecules penetrating through the foam film, which made the carbon dioxide foam instability, and the other is the increase of the hydrophobicity of surfactants, which induced the variation of the array behavior of surfactants. Fourier transform infrared (FT-IR) was used to detect the gas permeability of the foam film. The experimental results showed that the tail chains of SDS arranged closely and the amount of CO2 penetrating through the foam film was little, which was in favor of the nice foam stability. The experimental results agreed very well with the molecular simulation results.

Key words: carbon dioxide water-based foam, molecular array behavior, foam stability, FT-IR

中图分类号: 

  • O647
[1] PAULSON O, PUGH R J. Flotation of inherently hydrophobic particles in aqueous solutions of inorganic electrolytes[J]. Langmuir, 1996, 12(20):4808-4813.
[2] BINKS B P. Particles as surfactants-similarities and differences[J]. Current Opinion in Colloid & Interface Science, 2002, 7(1):21-41.
[3] FARAJZADEH R, ANDRIANOV A, ZITHA P L. Investigation of immiscible and miscible foam for enhancing oil recovery[J]. Industrial & Engineering Chemistry Research, 2009, 49(4):1910-1919.
[4] WALKER P L. SPIE's International symposium on optical science, engineering, and instrumentation[C]. San Diego:International Society for Optics and Photonics, 1998.
[5] SEKI N. Baek-Me1ting of a horizonta1 c1oudy ice layer with radiative heating[J]. Journal of Heat Transfer, 1979, 101(1):90-95.
[6] YANG Yonglai, GUPTA M C. Novel carbon nanotube polystyrene foam composites for electromagnetic interference shielding[J]. Nano Lett, 2005, 5(11):2131-2134.
[7] BALL G J, EAST R A. Shock and blast attenuation by aqueous foam barriers:influences of barrier geometry[J]. Shock Waves, 1999, 9(1):37-47.
[8] MA G W, YE Z Q. Analysis of foam claddings for blast alleviation[J]. International Journal of Impact Engineering, 2007, 34(1):60-70.
[9] NGUYEN P, FADAEI H, SINTON D. Pore-scale assessment of nanoparticle-stabilized CO2 foam for enhanced oil recovery[J]. Energy & Fuels, 2014, 28(10):6221-6227.
[10] 颜五和,谢尚贤,韩培慧. 泡沫与泡沫驱油[J].油田化学,1990,7(4):380-385. YAN Wuhe, XIE Shangxian, HAN Peihui. On foam and foam flooding[J]. Oilfield Chemistry, 1990, 7(4):380-385.
[11] 刘伟,董胜祥,曹子龙. 泡沫洗井工艺的研究及应用[J].钻采工艺, 2002, 25(2):45-48. LIU Wei, DONG Shengxiang, CAO Zilong. Research and application of foam well flooding technology[J]. Drilling & Production Technology, 2002, 25(2):45-48.
[12] ZHU T, OGBE D O, KHATANIAR S. Improving the foam performance for mobility control an improved sweep efficiency in gas flooding[J]. Industrial & Engineering Chemistry Research, 2004, 43(15):4413-4421.
[13] HOLLOWAY S. Underground sequestration of carbon dioxide-a viable greenhouse gas mitigation option[J]. Energy, 2005, 30(11):2318-2333.
[14] ROSSEN W R. Foams in Enhanced Oil Recovery[M]//PRUD'HOMME R K, KHAN S, FOAMs.Theory, measurements and applications. New York:CRC Press, 1996.
[15] JESSEN K, KOVSCEK A R, ORR F M. Increasing CO2 storage in oil recovery[J]. Energy Conversion and Management, 2005, 46(2):293-311.
[16] FARAJZADEH R, ANDRIANOV A, BRUINING H. Comparative study of CO2 and N2 foams in porous media at low and high pressure temperatures[J]. Industrial & Engineering Chemistry Research, 2009, 48(9):4542-4552.
[17] FRIED A N. The foam-drive process for increasing the recovery of oil[M]. Washington:US Department of the Interior, Bureau of Mines, 1961.
[18] BOUD D C, Holbrook O C. Gas drive oil recovery process:Washington, DC:U.S. Patent and Trademark Office, Patent No. 2, 866, 507[P].1958.
[19] KOEHLER S A, HILGENFELDT S, STONE H A. A generalized view of foam drainage:experiment and theory[J]. Langmuir, 2000, 16(15):6327-6341.
[20] BHATTACHARYYA A, MONROY F, LANGEVIN D. Surface rheology and foam stability of mixed surfactant-polyelectrolyte solutions[J]. Langmuir, 2000, 16(23):8727-8732.
[21] LI Chunxiu, LI Ying, YUAN Rui. Study of the microcharacter of ultrastable aqueous foam stabilized by a kind of flexible connecting bipolar-headed surfactant with existence of magnesium ion[J]. Langmuir, 2013, 29(18):5418-5427.
[22] KHALID E K, BABIKER E E, TINAY A H E L. Solubility and functional properties of sesame seed proteins as influenced by ph and/or salt concentration[J]. Food Chemistry, 2003, 82(3):361-366.
[23] FARAUDO J, BRESME F. Anomalous dielectric behavior of water in ionic newton black films[J]. Physical Review Letters, 2004, 92(23):236102.
[24] FARAUDO J. The missing link between the hydration force and interfacial water:evidence from computer simulations[J]. Current Opinion in Colloid & Interface Science, 2011, 16(6):557-560.
[25] HU Xiaoying, LI Ying, HE Xiujuan. Structure behavior property relationship study of surfactants as foam stabilizers explored by experimental and molecular simulation approaches[J]. The Journal of Physical Chemistry B, 2012, 116(1):160-167.
[26] BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. Effect of support pretreatments on carbon-supported iron particles[J]. Journal of Physical Chemistry, 1987, 91(24):6257-6269.
[27] GAMBA Z, HAUTMAN J, SHELLY J C. Molecular dynamics investigation of a Newtonian black film[J]. Langmuir, 1992, 8(12):3155-3160.
[28] SUN H, REN P, FRIED J R. The COMPASS force field:parameterization and validation for phosphazenes[J]. Computational and Theoretical Polymer Science, 1998, 8(1):229-246.
[29] VERLET L, Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules[J]. Physical Review, 1967, 159(1):98-103.
[30] NOSE S. A Unified formulation of the constant temperature molecular dynamics methods[J]. The Journal of chemical physics,1984, 81(1):511-519.
[31] HOOVER W G. Canonical dynamics:equilibrium phase-space distributions[J]. Physical Review A, 1985, 31(3):1695-1697.
[32] LV Weiqin, LI Ying, LI Yaping. Ultra-stable aqueous foam stabilized by water-soluble alkyl acrylate crosspolymer[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 457:189-195.
[1] 刘少杰 迟卫东 陆玮洁 李真. 类脂液晶中PC对MO构象影响及释放行为[J]. J4, 2010, 45(1): 10-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!