您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (11): 23-31.doi: 10.6040/j.issn.1671-9352.0.2014.522

• 论文 • 上一篇    下一篇

两种沉水植物分解过程及温度影响的模拟研究

侯雪薇1, 张桂斋2, 李静2, 李小明1   

  1. 1. 山东大学环境科学与工程学院, 山东 济南 250100;
    2. 山东农业工程学院农业科学与工程系, 山东 济南 250100
  • 收稿日期:2014-11-23 修回日期:2015-03-09 出版日期:2015-11-20 发布日期:2015-12-09
  • 通讯作者: 李小明(1956-),男,教授,博士生导师,主要研究方向为环境生态学.E-mail:lxming@sdu.edu.cn E-mail:lxming@sdu.edu.cn
  • 作者简介:侯雪薇(1990-),女,硕士研究生,研究方向为环境生态学.E-mail:lalavande@126.com
  • 基金资助:
    国家公益性行业科研专项经费项目(201001074)

Decomposition processes and simulation of two species of submerged plants under different temperatures

HOU Xue-wei1, ZHANG Gui-zhai2, LI Jing2, LI Xiao-ming1   

  1. 1. School of Environmental Science and Engineering, Shandong University, Jinan 250100, Shandong, China;
    2. Department of Agriculture Science and Engineering, Shandong Agriculture and Engineering College, Jinan 250100, Shandong, China
  • Received:2014-11-23 Revised:2015-03-09 Online:2015-11-20 Published:2015-12-09

摘要: 实验室模拟条件下,对采自大明湖的两种沉水植物菹草(Potamogeton crispus L.)和篦齿眼子菜(Potamogeon pectinatus L.)在不同温度和不同生物量密度条件下进行60 d的分解实验,研究沉水植物茎叶分解及C、N、P元素释放过程。实验结果表明:两种沉水植物分解速率很快,并且呈现前期快、后期慢的阶段性特征,菹草的分解速率大于篦齿眼子菜。沉水植物茎叶残留物分解过程中营养元素含量的变化,主要受植物组织化学组成影响。温度影响沉水植物的分解过程,高温加速了两种沉水植物前期分解速率,但并没有增加最终分解比率。

关键词: 沉水植物, 分解, 营养元素, 残留物

Abstract: Decomposition experiment of two species of submerged plants collected from Daming Lake under different temperatures was performed under laboratory simulated conditions for 60 days. The objective of this research was to study the decomposition processes and nutrient dynamics of the two submerged plants. The results indicated that the decomposition rates of both submerged plants were very fast. The decomposition process showed that the decomposition rates were faster in early stage than in later stage for two submerged plants. And the decomposition rate of Potamogeton crispus was greater than that of Potamogeon pectinatus. The decomposition efficiency and nutrient dynamics in residues of two submerged plants under different decomposition stages were mainly influenced by the chemical compositions of two submerged plants. The decomposition process was affected by water temperature. The higher temperature significantly accelerated the decomposition rate in the early stage for two submerged plants, but did not increase the final decomposition efficiency for two submerged plants.

Key words: residue, decomposition, nutrient, submerged plant

中图分类号: 

  • X524
[1] ENGEL S. The role and interactions of submersed macrophytes in a shallow Wisconsin Lake[J]. Freshwater Ecology, 1988, 4(3):329-341.
[2] HOORENS B, AERTS R, STROETENGA M. Does initial litter chemistry explain litter mixture effects on decomposition?[J]. Oecologia, 2003, 137(4):578-586.
[3] GESSNER M O. Mass loss, fungal colonisation and nutrient dynamics of Phragmites australis leaves during senescence and early aerial decay[J]. Aquatic Botany, 2001, 69(2/4):325-339.
[4] KUEHN K A, SUBERKROPP K. Decomposition of standing litter of the freshwater emergent macrophyte Juncus effusus[J]. Freshwater Biology, 1998, 40(4):717-727.
[5] 史绮, 焦锋, 陈莹,等.杭州西湖北里湖荷叶枯落物分解及其对水环境的影响[J]. 生态学报, 2011, 31(18):5171-5179. SHI Qi, JIAO Feng, CHEN Ying, et al. Decomposition of lotus leaf litter and its effect on the aquatic environment of the Beili Lake in the Hangzhou West Lake[J]. Acta Ecologica Sinica, 2011, 31(18):5171-5179.
[6] MOSS B. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components[J]. Hydrobiologia, 1990, 200-201(1):367-377.
[7] 杨清心.东太湖水生植被的生态功能及调节机制[J]. 湖泊科学,1998, 10(1):67-72. YANG Qingxin. The ecological function and regulation mechanism of aquatic plants in Eastern Tai Lake[J]. Journal of Lake Science, 1998, 10(1):67-72.
[8] 王苏民, 窦鸿身.中国湖泊志[M]. 北京:科学出版社, 1998. WANG Sumin, KOU Hongshen. Lake of China[M]. Beijing:Science Press, 1998.
[9] 秦伯强, 高光, 朱广伟,等.湖泊富营养化及其生态系统响应[J]. 科学通报, 2013, 58(10):855-864. QIN Boqiang, GAO Guang, ZHU Guangwei, et al. Lake eutrophication and the impact on the ecosystems[J]. Chinese Science Bulletin, 2013, 58(10):855-864.
[10] 国家环境保护总局.水和废水监测分析方法析[M]. 4版.北京:中国环境科学出版社, 2002. State Environmental Protection Administration. Methods for the monitoring and analysis of water and wastewater[M]. 4th Edition. Beijing:China Environmental Science Press, 2002.
[11] 王波.大明湖水质的季节变化模式及底泥磷吸附释放特性研究[D]. 山东:山东大学出版社, 2007. WANG Bo. Seasonal dynamic patterns of the water quality and sediment sorption and release of Daming lack[D]. Shandong:Shandong University Press, 2007.
[12] 中国科学院南京土壤研究所.土壤理化分析[M]. 上海:上海科学技术出版社,1978. Institute of Soil Science. Soil physical and chemical analyses[M]. Shanghai:Shanghai Science and Technology Press, 1978.
[13] 鲍士旦.土壤农化分析[M]. 3版.北京:中国农业出版社, 1999. BAO Shidan. Soil agrochemistry analyses[M]. 3th Edition. Beijing:China Agriculture Press, 1999.
[14] HOWARD-WILLIAMS C, DAVIES B R. The rates of dry matter and nutrient loss from decomposing Potamogeton pectinatus in a brackish south-temperate coastal lake[J]. Freshwater Biology, 1979, 9(1):13-21.
[15] 曾从盛, 张林海, 王天鹅,等.闽江河口湿地植物枯落物立枯和倒伏分解主要元素动态[J]. 生态学报, 2012, 32(20):6289-6299. ZENG Congsheng, ZHANG Linhai, WANG Tiane, et al. Nutrient dynamics of the litters during standing and sediment surface decay in the Min River estuarine marsh[J]. Acta Ecologica Sinica, 2012, 32(20):6289-6299.
[16] WELSCH M, YAVITT J B. Early stages of decay of Lythrum salicaria L. and Typha latifolia L. in a standing-dead position[J]. Aquatic Botany, 2003, 75(1):45-57.
[17] CHIMNEY M J, PIETRO K C. Decomposition of macrophyte litter in a subtropical constructed wetland in south Florida (USA)[J]. Ecological Engineering, 2006, 27(4):301-321.
[18] 张菊, 邓焕广,吴爱琴,等.东平湖菹草腐烂分解及其对水环境的影响[J]. 环境科学学报, 2013, 33(9):235-241. ZHANG Ju, DENG Huanguang, WU Aiqin, et al. Decomposition of Potamogeton crispus and its effect on the aquatic environment of Dongping Lake[J]. Acta Scientiae Circumstantiae, 2013, 33(9):235-241.
[19] 李文朝, 陈开宁, 吴庆龙,等.东太湖水生植物生物质腐烂分解实验[J]. 湖泊科学, 2001, 13(4):331-336. LI Wenchao, CHEN Kaining, WU Qinglong, et al. Decomposition experiment of aquatic plants in Eastern Tai Lake[J]. Journal of Lake Sciences, 2001, 13(4):331-336.
[20] OZALP M, CONNER W H, LOCKABY B G. Above-ground productivity and litter decomposition in a tidal freshwater forested wetland on Bull Island, SC, USA[J]. Forest Ecology and Management, 2007, 245(1/3):31-43.
[21] ZHANG QISHUI, ZAK J C. Effects of gap size on litter decomposition and microbial activity in a subtropical forest[J]. Ecology, 1995, 76(7):2196-2204.
[22] FOG K. The effect of added nitrogen on the rate of decomposition of organic matter[J]. Biological Review, 1988, 63(3):433-462.
[23] TAYLOR B R, PARKINSON D, PARKINSON W. Nitrogen and lignin content as predictors of litter decay rates:a microcosm test[J]. Ecology, 1989, 70(1):97-104.
[24] 王崇江, 王金文, 沈昌汉,等.南四湖饲料资源调查及开发利用[J].草与畜杂志, 1991, 11(1):4-6. WANG Chongjiang, WANG Jinwen, SHEN Changhan, et al. The development and exploitation of feed resources in Nansi Lake[J]. China Herbivores Science, 1991, 11(1):4-6.
[25] THOMAZ S M, BINI L M, BOZELLI R L. Floods increase similarity among aquatic habitats in river-floodplain systems[J]. Hydrobiologia, 2007, 579(1):1-13.
[26] GALICIA L, GARCÍA-OLIVA F. Litter quality of two remnant tree species affects soil microbial activity in tropical seasonal pastures in western Mexico[J]. Arid Land Research and Management, 2011, 25(1):75-86.
[27] DAVIS S E. Ⅲ, CORRONADO C, CHILDERS D L, et al. Temporally dependent C、N and P dynamics associated with the decay of Rhizophora mangle L. leaf litter in oligotrophic mangrove wetlands of the Southern Everglades[J]. Aquatic Botany, 2003, 75(3):199-215.
[28] 杨继松, 刘景双, 于君宝,等.三江平原小叶章湿地枯落物分解及主要元素变化动态[J]. 生态学杂志, 2006, 25(6):597-602. YANG Jisong, LIU Jingshuang, YU Junbao, et al. Dynamics of major elements in Deyeuxia angustifolia litter during its decomposition in Sanjiang Plain[J]. Chinese Journal of Ecology, 2006, 25(6):597-602.
[29] 杨继松, 刘景双, 于君宝,等.三江平原沼泽湿地枯落物分解及其营养动态[J]. 生态学报, 2006, 26(5):1297-1302. YANG Jisong, LIU Jingshuang, YU Junbao, et al. Decomposition and nutrient dynamics of marsh litter in the Sanjiang Plain, China[J]. Acta Ecologica Sinica, 2006, 26(5):1297-1302.
[30] HERNES P J, BENNER R, COWIE G L, et al. Tannin diagenesis in mangrove leaves from a tropical estuary:a novel molecular approach[J]. Geochimica et Cosmochimica Acta, 2001, 65(18):3109-3122.
[31] GESSNER M O. Breakdown and nutrient dynamics of submerged Phragmites shoots in the littoral zone of a temperate hardwater lake[J]. Aquatic Botany, 2000, 66(1):9-20.
[32] VAHATALO A V, SONDERGAARD M. Carbon transfer from detrital leaves of eelgrass (Zostera marina) to bacteria[J]. Aquatic Botany, 2002, 73(3):265-273.
[33] 武海涛, 吕宪国, 杨青,等.三江平原典型湿地枯落物早期分解过程及影响因素[J]. 生态学报, 2007, 27(10):331-336. WU Haitao, LV Xianguo, YANG Qing, et al. The early-stage litter decomposition and its influencing factors in the wetland of the Sanjiang Plain, China[J]. Acta Ecologica Sinica, 2007, 27(10):331-336.
[34] BORNETTE G, PUIJALON S. Response of aquatic plants to abiotic factors:a review[J]. Aquatic Sciences, 2011, 73(1):1-14.
[35] WHITE D A, TRAPANI J M. Factors influencing disappearance of Spartina Alterniflora from litterbags[J]. Ecology, 1982, 63(1):242-245.
[36] PARK S, CHO K. Nutrient leaching from leaf litter of emergent macrophyte (Zizania latifolia) and the effects of water temperature on the leaching process[J]. Korean Journal of Biological Science, 2003, 7(4):289-294.
[37] NOAH F, JOSEPH M C, KENDRA M, et al. Litter quality and the temperature sensitivity of decomposition[J]. Ecology, 2005, 6(2):320-326.
[1] 邹绍辉,张甜. 国际碳期货价格与国内碳价动态关系[J]. 山东大学学报(理学版), 2018, 53(5): 70-79.
[2] 陈东,王芳贵,蹇红,陈明钊. 2-强Gorenstein半单环上模的结构及其应用[J]. 山东大学学报(理学版), 2018, 53(4): 24-30.
[3] 黄淑芹,徐勇,王平水. 基于概率矩阵分解的用户相似度计算方法及推荐应用[J]. 山东大学学报(理学版), 2017, 52(11): 37-43.
[4] 马鑫,赵有益,牛雪娜. 复形的同伦分解的存在性及其同调维数[J]. 山东大学学报(理学版), 2017, 52(10): 18-23.
[5] 董炯,曹小红. 算子立方的Weyl定理及其紧摄动[J]. 山东大学学报(理学版), 2016, 51(8): 15-21.
[6] 林屏峰. 集合Λ上的半格Γ确定的二元关系半群PΓ(Λ×Λ)的不可分解元[J]. 山东大学学报(理学版), 2016, 51(2): 12-15.
[7] 刘文月,孙同军. 椭圆方程约束的最优边界控制问题的非重叠型区域分解迭代方法[J]. 山东大学学报(理学版), 2016, 51(2): 21-28.
[8] 汤积华,陈保会,史开泉. P-增广矩阵推理与信息的智能分解挖掘[J]. 山东大学学报(理学版), 2016, 51(12): 61-66.
[9] 杨元慧,李国栋,吴春富,王小龙. 单目视觉SLAM车载摄像机快速位姿估计及景物重构[J]. 山东大学学报(理学版), 2016, 51(12): 116-124.
[10] 高晓波,方献梅,李石君. 基于因子分解机的信任感知商品推荐[J]. 山东大学学报(理学版), 2016, 51(1): 89-94.
[11] 奉国和,王丹迪,李媚婵. 基于SVD的档案学主题挖掘[J]. 山东大学学报(理学版), 2016, 51(1): 95-100.
[12] 王文康. 三角范畴中的投射分解[J]. 山东大学学报(理学版), 2015, 50(12): 114-120.
[13] 罗高骏, 左可正, 周良. Core逆的一些新特征[J]. 山东大学学报(理学版), 2015, 50(04): 90-94.
[14] 唐庆顺, 吴春富, 李国栋, 王小龙, 周风余. 移动机器人车载摄像机位姿的高精度快速求解[J]. 山东大学学报(理学版), 2015, 50(03): 32-39.
[15] 海进科,王胜芳,李正兴. 关于极大π-可分解因子的次正规对[J]. 山东大学学报(理学版), 2014, 49(2): 1-3.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!