您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (09): 69-73.doi: 10.6040/j.issn.1671-9352.2.2014.065

• 论文 • 上一篇    下一篇

一种地理围栏服务中的LBS隐私保护方法

杨松涛1,2, 马春光1, 周长利1, 张宗利2   

  1. 1. 哈尔滨工程大学计算机科学与技术学院, 黑龙江 哈尔滨 150001;
    2. 佳木斯大学信息电子技术学院, 黑龙江 佳木斯 154007
  • 收稿日期:2014-06-24 修回日期:2014-08-27 出版日期:2014-09-20 发布日期:2014-09-30
  • 通讯作者: 马春光(1974-),男,教授,博士,研究方向为网络安全.E-mail:machunguang@hrbeu.edu.cn E-mail:machunguang@hrbeu.edu.cn
  • 作者简介:杨松涛(1972-),男,副教授,博士研究生,研究方向为隐私保护.E-mail:songtao_y@163.com
  • 基金资助:
    黑龙江省教育厅科学技术研究项目(12541788)

A LBS privacy-preserving method for geo-fencing services

YANG Song-tao1,2, MA Chun-guang1, ZHOU Chang-li1, ZHANG Zong-li2   

  1. 1. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, Heilongjiang, China;
    2. College of Information and Electronic Technology, Jiamusi University, Jiamusi 154007, Heilongjiang, China
  • Received:2014-06-24 Revised:2014-08-27 Online:2014-09-20 Published:2014-09-30

摘要: 地理围栏技术广泛应用于推荐系统、广告推送等服务中,存在严重的位置隐私泄露风险。针对地理围栏服务中的触发查询问题,设计了基于位置服务(location-based services,LBS)隐私保护模型。该模型基于安全三方计算理论,遵循位置模糊和位置k-匿名的理念,达到了身份不可关联和位置不可追踪的目标。借鉴计算几何方法解决了触发查询场景下的位置匿名隐藏问题,利用密码学原理实现用户身份秘密认证。从理论上分析了模型的安全性,从隐私保护角度来看,攻击者没有从LBS系统中获得新知识。实验验证了模型的计算效率和通信负载都优于传统的时空匿名方法。

关键词: 地理围栏, 隐私保护, 基于位置的服务, 触发查询, 安全三方计算

Abstract: Geo-fencing technology is widely used in recommender systems, advertising push and other services. It has serious risk of personal privacy leakage threat. Focus on triggered query in Geo-fencing, the theories of the secure tripartite computation were applied in the research of the LBS privacy-preserving model, which follows the concept of location obfuscation and location k-anonymity and reaches the target of user's identity unlink-ability and location's untraced-ability. Location anonymity hidden problem and secret authentication problem were solved by computational geometry techniques and principles of cryptography in the triggered queries scenario. Theoretical analysis shows the model is security. From the perspective of privacy-preserving, the attackers do not get new knowledge from LBS system. Experiments demonstrate the computational efficiency and communication loads of this medel are superior to the traditional spatial-temporal cloaking methods.

Key words: secure tripartite computation, geo-fencing, location-based services, privacy-preserving, triggered query

中图分类号: 

  • TP309
[1] CHOW C, MOKBEL M F, AREF W G. Casper*: query processing for location services without compromising privacy [J]. ACM Transactions on Database Systems, 2009, 34(4):24-48.
[2] KALNIS P, GHINITA G, MOURATIDIS K, et al. Preventing location-based identity inference in anonymous spatial queries[J].IEEE Transactions on Knowledge and Data Engineering, 2007, 19(12):1719-1733.
[3] 黄毅,霍峥,孟小峰. CoPrivacy:一种用户协作无匿名区域的位置隐私保护方法[J]. 计算机学报,2011, 34(10): 1976-1985. HUANG Yi, HUO Zheng, MENG Xiaofeng. CoPrivacy: a collaborative location privacy-preserving method without cloaking region [J].Chinese Journal of Computers, 2011, 34(10): 1976-1985.
[4] 彭志宇,李善平. 移动环境下LBS位置隐私保护[J].电子与信息学报,2011(5): 1211-1216. PENG Zhiyu, LI Shanping. Protecting location privacy in location-based services in mobile environments [J]. Journal of Electronics & Information Technology, 2011, (5):1211-1216.
[5] TRUJILLO-RASUA R, DOMINGO-FERRER J. On the privacy offered by (k, delta)-anonymity [J]. Information Systems, 2013, 38(4, SI):491-494.
[6] PAPADOPOULOS S, BAKIRAS S, PAPADIAS D. Nearest neighbor search with strong location privacy [J]. Proc VLDB Endow, 2010, 3(1-2): 619-629.
[7] LIU Yubao, CHEN Xiuwei, LI Zhijie, et al. An efficient method for privacy preserving location queries [J]. Frontiers of Computer Science, 2012, 6(4): 409-420.
[8] UM J, KIM Y, LEE H. k-nearest neighbor query processing algorithm for cloaking regions towards user privacy protection in location-based services[J]. Journal of Systems Architecture, 2012, 58(9): 354-371.
[9] GHINITA G, KALNIS P, KHOSHGOZARAN A. Private queries in location-based services: anonymizers are not necessary[C]//Proceedings of 2008 ACM SIGMOD international conference on Management of data. Vancouver: ACM, 2008:121-132.
[10] LI Ming, YU Shucheng, CAO Ning,et al. Privacy-preserving distributed profile matching in proximity-based mobile social networks [J]. IEEE Transactions on Wireless Communications, 2013, 12(5): 2024-2033.
[11] WU Liang, JING Yaping.The protection algorithm of personal privacy information in sensors network [J].Sensor Letters, 2013, 11(4): 726-730.
[12] LIEN I-ting, LIN Yu-hsun, SHIEH Jyh-ren,et al. A novel privacy preserving location-based service protocol with secret circular shift for k-NN search [J].IEEE Transactions on Information Forensics and Security, 2013, 8(6, SI): 863-873.
[13] LI Fengjun, LUO Bo, LIU Peng,et al. Enforcing secure and privacy-preserving information brokering in distributed information sharing[J]. IEEE Transactions on Information Forensics and Security, 2013, 8(6, SI): 888-900.
[1] 李艳平,齐艳姣,张凯,魏旭光. 支持用户撤销的多授权机构的属性加密方案[J]. 山东大学学报(理学版), 2018, 53(7): 75-84.
[2] 康海燕,黄渝轩,陈楚翘. 基于视频分析的地理信息隐私保护方法[J]. 山东大学学报(理学版), 2018, 53(1): 19-29.
[3] 毕晓迪,梁英,史红周,田辉. 一种基于隐私偏好的二次匿名位置隐私保护方法[J]. 山东大学学报(理学版), 2017, 52(5): 75-84.
[4] 康海燕,马跃雷. 差分隐私保护在数据挖掘中应用综述[J]. 山东大学学报(理学版), 2017, 52(3): 16-23.
[5] 柳欣,徐秋亮,张波. 满足可控关联性的合作群签名方案[J]. 山东大学学报(理学版), 2016, 51(9): 18-35.
[6] 查明明,王伟. FlowMonitor: Android隐私数据流向监控防护系统[J]. 山东大学学报(理学版), 2016, 51(9): 59-67.
[7] 李宇溪,王恺璇,林慕清,周福才. 基于匿名广播加密的P2P社交网络隐私保护系统[J]. 山东大学学报(理学版), 2016, 51(9): 84-91.
[8] 蔡红云,马晓雪. 在线社会网络中基于关系强度的访问控制机制[J]. 山东大学学报(理学版), 2016, 51(7): 90-97.
[9] 蔡红云, 田俊峰. 云计算中的数据隐私保护研究[J]. 山东大学学报(理学版), 2014, 49(09): 83-89.
[10] 康海燕, 杨孔雨, 陈建明. 于K-匿名的个性化隐私保护方法研究[J]. 山东大学学报(理学版), 2014, 49(09): 142-149.
[11] 赵泽茂1,李林1,张帆1,2,张品1,周建钦1,王家波1. 基于分散子匿名区域的位置隐私保护方法[J]. J4, 2013, 48(7): 56-61.
[12] 景旭1,2,3, 何东健1*. 无完全可信PKG身份签名的分层CES方案[J]. J4, 2012, 47(9): 7-14.
[13] 高枫1,何泾沙2. 基于信任和信息流模型的隐私保护方法[J]. J4, 2011, 46(5): 39-43.
[14] 叶明全1,2, 胡学钢1,伍长荣3. 垂直划分多决策表下基于条件信息熵的隐私保护属性约简[J]. J4, 2010, 45(9): 14-19.
[15] 邱桃荣,王璐,熊树洁,白小明. 一种基于粒计算的知识隐藏方法[J]. J4, 2010, 45(7): 60-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!