您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (11): 107-114.

• • 上一篇    下一篇

重叠网络上信息与疾病传播模型及其分析

梁蕾,刘桂荣*   

  1. 山西大学数学科学学院, 山西 太原 030006
  • 收稿日期:2016-02-03 出版日期:2016-11-20 发布日期:2016-11-22
  • 通讯作者: 刘桂荣(1975— ), 男, 教授, 博导,研究方向为生物动力系统. E-mail:lgr5791@sxu.edu.cn E-mail:959882029@qq.com
  • 作者简介:梁蕾(1990— ), 女, 硕士研究生, 研究方向为微分方程与动力系统. E-mail:959882029@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11471197);山西省自然科学基金资助项目(2014011005-1)

Analysis of an epidemic model with information on overlay network

LIANG Lei, LIU Gui-rong*   

  1. School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, China
  • Received:2016-02-03 Online:2016-11-20 Published:2016-11-22

摘要: 建立了重叠网络上的SAIS模型, 应用泰勒公式以及矩阵理论, 得到疾病传染强度的第二阈值的表达式。 进一步通过数值模拟和随机模拟比较可知, 信息的传播抑制了疾病的传播, 且染病者恢复后形成的警觉性会增大疾病传染强度的第二阈值, 并有效降低疾病的传播规模。

关键词: 重叠网络, 信息传播, 传染强度, SAIS模型, 阈值

Abstract: An SAIS model on overlay network is established. Using the Taylors formula and Matrix theory, the expression of the second threshold of infection strength is obtained. Furthermore, by comparing the numerical simulations and stochastic simulations it can be found that the dissemination of information inhibits the epidemic spreading, and the alertness of recovery increases the second epidemic threshold of infection strength, also effectively reduces the infection size.

Key words: overlay network, infection strength, information dissemination, threshold, SAIS model

中图分类号: 

  • O175
[1] 靳祯, 孙桂全, 刘茂省. 网络传染病动力学建模与分析[M]. 北京: 科学出版社, 2014. JIN Zhen, SUN Guiquan, LIU Maoxing. Modelling and analysis of epidemic spreading on networks[M]. Beijing: Science Press, 2014.
[2] YASHIMA K, SASAKI A. Epidemic dynamics of infectious disease in metropolitan area and its optimal intervention strategy[J]. IFAC-Papers OnLine, 2015, 48(18):136-140.
[3] KUMAR M, MISHRA B K, PANDA T C. Stability analysis of a quarantined epidemic model with latent and breaking-out over the internet[J]. International Journal of Hybrid Information Technology, 2015, 8(7): 133-148.
[4] CHAKRABARTI D, WANG Y, WANG C, et al. Epidemic thresholds in real networks[J]. ACM Transactions on Information and System Security, 2008, 10(4):1-26.
[5] VAN MIEGHEM P, OMIC J, KOOIJ R. Virus spread in networks[J]. Networking, IEEE/ACM Transactions on, 2009, 17(1):1-14.
[6] KISS I Z, CASSELL J, RECKER M, et al. The impact of information transmission on epidemic outbreaks[J]. Mathematical Biosciences, 2010, 225(1):1-10.
[7] HATZOPOULOS V, TAYLOR M, SIMON P L, et al. Multiple sources and routes of information transmission: implications for epidemic dynamics[J]. Mathematical Biosciences, 2011, 231(2):197-209.
[8] SHAKERI H, SAHNEH F D, SCOGLIO C, et al. Optimal information dissemination strategy to promote preventive behaviours in multilayer epidemic networks[J]. Math Biosc Eng, 2015, 12(3):609-623.
[9] SAHNEH F D, SCOGLIO C M. Epidemic spread in human networks[C] // Decision and Control and European Control Conference(CDC-ECC), 2011 50th IEEE Conference on. New York: IEEE, 2011.
[10] SAHNEH F D, SCOGLIO C M. Optimal information dissemination in epidemic networks[C] // Decision and Control(CDC), 2012 IEEE 51st Annual Conference on. New York: IEEE, 2012.
[1] 张倩,李海洋. 稀疏信息处理中的迭代分式阈值算法[J]. 山东大学学报(理学版), 2017, 52(9): 76-82.
[2] 施章磊,李维国. A分级硬阈值追踪[J]. 山东大学学报(理学版), 2017, 52(8): 58-64.
[3] 张道祥,胡伟,陶龙,周文. 一类具有不同发生率的双疾病随机SIS传染病模型的动力学研究[J]. 山东大学学报(理学版), 2017, 52(5): 10-17.
[4] 朱玺, 董喜双, 关毅, 刘志广. 基于半监督学习的微博情感倾向性分析[J]. 山东大学学报(理学版), 2014, 49(11): 37-42.
[5] 陈桂英. 带有阈值的广义模糊双向联想记忆#br# 网络的稳定性分析[J]. 山东大学学报(理学版), 2014, 49(1): 80-85.
[6] 郭浩,陆余良,王宇,张亮. 基于信息传播的微博用户影响力度量[J]. J4, 2012, 47(5): 78-83.
[7] 花兆秀,牛明飞 . 在索赔额相依的风险模型中的阈值分红策略[J]. J4, 2008, 43(10): 91-96 .
[8] 姜威,高赞,朱孔凤 . 一种改进的自动聚焦算法[J]. J4, 2006, 41(5): 119-123 .
[9] 曹 鸿,董守斌,张 凌 . 基于加权策略的SVM多元分类器[J]. J4, 2006, 41(3): 66-69 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!