您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (12): 54-60.doi: 10.6040/j.issn.1671-9352.0.2016.375

• • 上一篇    下一篇

逆P-集合的扰动定理与数据的扰动挖掘

任雪芳,张凌   

  1. 龙岩学院信息工程学院, 福建 龙岩 364012
  • 收稿日期:2016-07-31 出版日期:2016-12-20 发布日期:2016-12-20
  • 作者简介:任雪芳(1981— ), 女, 讲师, 研究方向为信息科学、系统理论与应用. E-mail:renxf0311@163.com
  • 基金资助:
    福建省中青年教师教育科研项目(JA15495,JA15503);龙岩学院重点学科资助项目;龙岩学院协同创新资助项目

Perturbation theorems of inverse P-sets and perturbation-based data mining

REN Xue-fang, ZHANG Ling   

  1. School of Information Engineering, Longyan University, Longyan 364012, Fujian, China
  • Received:2016-07-31 Online:2016-12-20 Published:2016-12-20

摘要: 逆P-集合是把动态特征引入到有限普通元素集合内提出的,逆P-集合具有动态特征。逆P-集合的动态特征来自集合的元素(属性)迁移,元素迁入使得集合的边界发生扩展扰动,元素迁出使得集合的边界发生收缩扰动。本文基于逆P-集合的概念与结构,提出内逆P-集合的F-扰动度、外逆P-集合的(-overF)-扰动度与逆P-集合的(F,(-overF))-扰动度概念,给出它们的度量,并给出F-扰动定理、(-overF)-扰动定理与(F,(-overF))-扰动定理,以及在扰动存在的条件下,逆P-集合、逆P-集合族与有限普通元素集合X的关系利用这些结果,提出数据的F-扰动挖掘定理、(-overF)-扰动挖掘定理与(F,(-overF))-扰动挖掘定理。最后给出基于扰动度的数据挖掘应用。

关键词: 扰动定理, 扰动度, 边界, 数据的扰动挖掘定理, 逆P-集合

Abstract: Inverse P-sets were proposed by introducing dynamic characteristics into finite ordinary element set; inverse P-sets have dynamic characteristics, which characteristics come from element(attribute)transferring. Elements transferred into set make the boundary of the set expanding, while elements transferred from the set makes the boundary of the set contracting. Based on inverse P-sets, this paper proposes F-perturbation degree of internal inverse P-set, (-overF)-perturbation degree of outer inverse P-set and(F,(-overF))-perturbation degree of inverse P-set, and gives their measurements. Then this paper gives F-perturbation theorem, (-overF)-perturbation theorem and (F,(-overF))-perturbation theorem, and shows the relationships anong inverse P-sets, inverse P-sets faminly and finite ordinary element set under perturbations. By using the aforementioned results, F-perturbation based data mining theorem, (-overF)-perturbation based data mining theorem and (F,(-overF))-perturbation based data mining theorem are presented. Finally an application of data mining based on perturbation degree is shown.

Key words: perturbation-based data mining theorems, perturbation degrees, boundary, inverse P-sets, perturbation theorems

中图分类号: 

  • O144
[1] 史开泉. 逆P-集合[J]. 山东大学学报(理学版), 2012, 47(1):98-109. SHI Kaiquan. Inverse P-sets[J]. Journal of Shandong University(Natural Science), 2012, 47(1):98-109.
[2] SHI Kaiquan. Function inverse P-sets and the hiding information generated by function inverse P-information law fusion[C] // Proceedings of the 13th IFIP WG 6.11 Conference on e-Business, e-Services, and e-Society. Berlin: Springer-Verlag, 2014: 224-237.
[3] 任雪芳, 张凌, 史开泉. 基数余-亏与逆P-增广矩阵[J]. 山东大学学报(理学版), 2015, 50(10):13-18. REN Xuefang, ZHANG Ling, SHI Kaiquan. Surplus-deficiency of cardinal number and inverse P-augmented matrices[J]. Journal of Shandong University(Natural Science), 2015, 50(10):13-18.
[4] LIN Hongkang, FAN Chengxian. Embedding camouflage of inverse P-information and applications[J]. International Journal of Convergence Information and Technology, 2012, 7(20):471-480.
[5] FAN Chengxian, HUANG Shunliang. Inverse P-reasoning discovery identification of inverse P-information[J]. International Journal of Digital Content Technology and its Applications, 2012, 6(20):735-744.
[6] 史开泉. P-集合,逆P-集合与信息智能融合-过滤辨识[J]. 计算机科学,2012, 39(4):1-13. SHI Kaiquan. P-sets, inverse P-sets and the intelligent fusion-filter identification of information[J]. Computer Science, 2012, 39(4):1-13.
[7] 史开泉, 汤积华, 张凌. 逆P-信息智能融合与信息智能隐藏的隐性传递[J]. 系统工程与电子技术, 2015, 37(3):599-605. SHI Kaiquan, TANG Jihua, ZHANG Ling. Intelligent fusion of inverse P-information and recessive transmission of information intelligent hiding[J]. Systems Engineering and Electronics, 2015, 37(3):599-605.
[8] 史开泉. P-集合[J]. 山东大学学报(理学版), 2008, 43(11):77-84. SHI Kaiquan. P-sets[J]. Journal of Shandong University(Natural Science), 2008, 43(11):77-84.
[9] SHI Kaiquan. P-sets and its application[J]. Advances in Systems Science and Applications, 2009, 9(2):209-219.
[10] 张凌, 汤积华, 史开泉. 内P-信息融合与它的属性合取特征[J]. 山东大学学报(理学版), 2014, 49(2):93-97. ZHANG Ling, TANG Jihua, SHI Kaiquan. The fusion of internal P-information and its feature of attribute conjunction[J]. Journal of Shandong University(Natural Science)2014, 49(2):93-97.
[11] 史开泉, 张丽. 内P-集合与数据外-恢复[J]. 山东大学学报(理学版), 2009, 44(4):8-14. SHI Kaiquan, ZHANG Li. Internal P-sets and data outer-recovery [J]. Journal of Shandong University(Natural Science), 2009, 44(4):8-14.
[12] 史开泉. P-集合与它的应用特性[J]. 计算机科学, 2010, 37(8):1-8. SHI Kaiquan. P-sets and its applied characteristics[J]. Computer Science, 2010, 37(8):1-8.
[13] 史开泉. P-推理与信息的P-推理发现-辨识[J].计算机科学, 2011, 38(7):1-9. SHI Kaiquan. P-reasoning and P-reasoning discovery-identification of information[J]. Computer Science, 2011, 38(7):1-9.
[14] ZHANG Li, XIU Ming, SHI Kaiquan. P-sets and Applications of Internal-Outer Data Circle[C] // Proceedings of 2nd International Conference on Quantitative Logic and Soft Computing: Quantitative Logic and Soft Computing. Berlin: Springer-Verlag, 2010, 2:581-591.
[15] QIU Yufeng, CHEN Baohui. f-Model Generated by P-Set[C] // Proceedings of 2nd International Conference on Quantitative Logic and Soft Computing: Quantitative Logic and Soft Computing, Berlin: Springer-Verlag, 2010, 2:613-620.
[16] LI Yuying, ZHANG Ling, SHI Kaiquan. Generation and recovery of compressed data and redundant data[C] // Proceedings of 2nd International Conference on Quantitative Logic and Soft Computing: Quantitative Logic and Soft Computing. Berlin: Springer-Verlag, 2010, 2:661-671.
[17] ZHANG Ling, REN Xuefang. P-Sets and its (f, f)-Heredity[C] // Proceedings of 2nd International Conference on Quantitative Logic and Soft Computing: Quantitative Logic and Soft Computing. Berlin: Springer-Verlag, 2010, 2:735-743.
[18] XIU Ming, SHI Kaiquan, ZHANG Li. P-sets and (-overF)-data Selection-discovery[C] // Proceedings of 2nd International Conference on Quantitative Logic and Soft Computing: Quantitative Logic and Soft Computing. Berlin: Springer-Verlag, 2010, 2:791-799.
[1] 王凯,洪宇,邱盈盈,王剑,姚建民,周国栋. 一种查询意图边界检测方法研究[J]. 山东大学学报(理学版), 2017, 52(9): 13-18.
[2] 郭华龙,张凌. 数据分离与属性状态特征[J]. 山东大学学报(理学版), 2017, 52(12): 89-94.
[3] 刘文月,孙同军. 椭圆方程约束的最优边界控制问题的非重叠型区域分解迭代方法[J]. 山东大学学报(理学版), 2016, 51(2): 21-28.
[4] 任雪芳, 张凌, 史开泉. 基数余-亏与逆P-增广矩阵[J]. 山东大学学报(理学版), 2015, 50(10): 13-18.
[5] 杨林, 胡林, 张兴刚. 边界摩擦对二维堆积颗粒体系几何结构的影响[J]. 山东大学学报(理学版), 2015, 50(09): 7-12.
[6] 张凌, 任雪芳. 基数余-亏定理与数据外-内挖掘-分离[J]. 山东大学学报(理学版), 2015, 50(08): 90-94.
[7] 汤积华,陈保会. 内逆P-信息智能融合与属性析取扩展关系[J]. 山东大学学报(理学版), 2014, 49(2): 89-92.
[8] 张曰云. 随机函数逆P-集合与其属性依赖特征[J]. 山东大学学报(理学版), 2014, 49(10): 90-94.
[9] 张露,马如云. 渐近线性二阶半正离散边值问题正解的分歧结构[J]. 山东大学学报(理学版), 2014, 49(03): 79-83.
[10] 张景晓,徐风生. 函数内逆P-集合在QSPR研究中的应用[J]. J4, 2013, 48(8): 92-96.
[11] 郭华龙,陈保会*,汤积华. 逆P-集合与信息智能融合挖掘-发现[J]. J4, 2013, 48(8): 97-103.
[12] 汤积华1, 陈保会1*, 张凌1,白兴瑞2. 函数逆P-集合与逆P-信息规律动态分离[J]. J4, 2013, 48(8): 104-110.
[13] 王爱峰1,2. 具有快慢变量的方程组的阶梯状空间对照结构[J]. J4, 2013, 48(2): 98-104.
[14] 赵树理1,王军昌1,史开泉2. 逆P-等价类的逆P-推理分离-还原[J]. J4, 2013, 48(1): 62-67.
[15] 王学彬1,刘发旺2. 二维和三维的时间分数阶电报方程的解析解[J]. J4, 2012, 47(8): 114-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!