您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (12): 67-77.doi: 10.6040/j.issn.1671-9352.0.2015.625

• • 上一篇    下一篇

考虑随机性与模糊性的应急服务供应链转运策略

何新华1,胡文发2,许长延1,陈继红3   

  1. 1. 上海海事大学经济管理学院, 上海 201306;2. 同济大学经济与管理学院, 上海 200092;3. 上海海事大学交通运输学院, 上海 201306
  • 收稿日期:2015-12-17 出版日期:2016-12-20 发布日期:2016-12-20
  • 作者简介:何新华(1973— ),女,博士,副教授. 研究方向为供应链与物流管理.E-mail:xhhe@shmtu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(71102043,71371145,71473162,51409157);上海市教育委员会创新项目(14ZS123,14YZ109)

Collaborative transshipment strategy of service supply chain for emergencies based on stochastic and fuzzy simulation

HE Xin-hua1, HU Wen-fa2, XU Chang-yan1, CHEN Ji-hong3   

  1. 1. School of Economics Management, Shanghai Maritime University, Shanghai 201306, China;
    2. School of Economics and Management, Tongji University, Shanghai 200092, China;
    3. School of Transportation, Shanghai Maritime University, Shanghai 201306, China
  • Received:2015-12-17 Online:2016-12-20 Published:2016-12-20

摘要: 考虑由多个应急服务集成商和两个应急服务供应商组成的二级应急服务供应链系统,基于M/M/C/∞/m/FCFS的排队网络系统研究应急服务供应链的协同转运服务策略问题。为了保障顾客满足率,应急服务集成商之间可实施就近部分协同转运服务策略,即当应急服务集成商产品的库存量大于其协同转运服务点时,可以向其产品库存水平为零的应急服务集成商提供产品协同转运服务。建立应急服务集成商总利润最大和顾客等待时间最小的双目标函数,结合随机模糊变量模拟和粒子群算法对模型进行求解。通过具体算例对比分析部分协同转运服务策略和不协同转运服务策略的优劣,并进一步分析相关参数对应急服务集成商协同转运服务策略各项指标的影响,验证模型与算法的可行性和有效性。

关键词: 模糊模拟, 随机模拟, 协同转运, 两阶段粒子群算法, 应急服务供应链

Abstract: Including two service supplies and multiple service integers based on the M/M/C/∞/m/FCFS queuing system, a two-echelon service supply chain system was considered. The lateral collaborative transshipment principle and partial inventory sharing strategy to satisfy the demand. When a service integers stock is more than the collaborative transshipment point, the service integer could transport service item to other service integers. Otherwise, other service integers or the shared warehouse should transport service item to this service integer. Then the model is developed with the constraint of individual service integers service level to maximize the system total profit and minimize the waiting time, in which service integers stock level and collaborative transshipment points are decision variables. Based on two-stage particle swarm algorithm which combined random fuzzy simulation, the proposed model is solved. At last, a numerical example is given to analyze the total profit difference and the waiting time among partial collaborative transshipment strategy and no collaborative transshipment strategy. It is shown that the strategy with collaborative partial transshipment is superior to that without collaborative transshipment and it proves that this study has theoretical and practical values.

Key words: collaborative transshipment, fuzzy simulation, stochastic simulation, emergent service supply chain, two-stage particle swarm algorithm

中图分类号: 

  • F253.4
[1] HE Xinhua, HU Wenfa. Modeling relief demands in an emergency supply chain system under large-scale disasters based on a queuing network[J]. The Scientific World Journal, 2014, 2:1-12.
[2] 何新华,胡文发,肖敏. 突发事件下应急服务供应链的期权协同决策[J].山东大学学报(理学版),2015, 50(11):81-90. HE Xinhua, HU Wenfa, XIAO Min. Coordination optional contract mechanism of service supply chain for emergencies[J].Journal of Shandong University(Natural Science), 2015, 50(11):81-90.
[3] ELLRAM L M, TATE W L, BILLINGTON C. Understanding and managing the services supply chain [J]. Journal of Supply Chain Management, 2004, 40(4):17-32.
[4] YANG Z, ZHANG DL, XU J. The simulation of service supply chain formation based on mobile agent's searching[C] //Proceedings of the IEEE International Conference on E-commerce Technology for Dynamic-business.Los Alamitos: IEEE Computer Society, 2004: 175-178.
[5] CORR(^overE)A H.An operations management view of the services and goods offering mix[J]. International Journal of Operations and Production Management, 2007, 27(5):444-463.
[6] GRAHOVAC J, CHAKRAVARTY A. Sharing and lateral transshipment of inventory in a supply chain with expensive low-demand items[J]. Management Science, 2001, 47:579-594.
[7] KUTANOGLU E, MAHAJAN M. An inventory sharing and allocation method for a multi-location service parts logistics network with time-based service levels [J]. European Journal of Operational Research, 2009, 194:728-742.
[8] PAL K, KARAKOSTAS B. A multi agent-based service framework for supply chain management[J]. Procedia Computer Science, 2014, 32:53-60.
[9] HUSSAIN M, KHAN M, AL-AOMAR R. A framework for supply chain sustainability in service industry with confirmatory factor analysis [J].Renewable and Sustainable Energy Reviews, 2016, 55(3):1301-1312.
[10] SONG Jingsheng. Order-based backorders and their implications in multi-item inventory systems[J]. Management Science, 2002, 48(4):499-516.
[11] WEN Tao, HUANG Peiqing. An analysis of order-based backorders under transshipments[J]. Industrial Engineering and Management, 2007, 5:1-4.
[12] MAHADEV N V R, PEKEC A, ROBERTS F S, et al. On the order fill rate of multi-item base-stock inventory system[J]. Operations Research, 1998, 46:831-845.
[13] GLASSERMAN P, WANG Y. Leadtime inventory trade-offs in assemble-to-order system[J]. Operations Research, 1998, 46:858-871.
[14] SONG J S, YAO D D. Performance analysis and optimization of assemble-to-order systems with random leadtimes [J]. Operations Research, 2002, 50:889-903.
[15] YAO D. Modeling and optimization of supply networks[J]. International Workshop on Operations Research, 2001.
[16] 张敏, 程文明, 张则强,等. 面向大规模定制的供应链延迟策略模型[J]. 西南交通大学学报, 2011, 6:1055-1059. ZHANG Min, CHENG Wenming, ZHANG Zeqiang, et al. Supply chain postponement strategy model for mass customization[J]. Journal of Southwest Jiaotong University, 2011, 6:1055-1059.
[17] 朱雷,黎建强,汪明. 不确定条件下应急管理人力供应链多功能资源配置鲁棒优化问题[J]. 系统工程理论与实践, 2015, 35(3):736-742. ZHU Lei, LI Jianqiang, WANG Ming. Multi-resource robust optimization of emergency human resource supply chain management under uncertainty[J].Systems Engineering-Theory and Practice, 2015, 35(3):736-742.
[18] 张晓楠, 范厚明, 李剑锋. B2C物流配送网络双目标模糊选址模型与算法[J]. 系统工程理论与实践, 2015, 35(5):1202-1213. ZHANG Xiaonan, FAN Houming, LI Jianfeng. Bi-objective fuzzy location model and algorithm for the design of logistics distribution network in B2C [J].Systems Engineering-Theory and Practice, 2015, 35(5):1202-1213.
[19] DUBOIS D, PRADE H M. Fuzzy sets and systems: theory and applications[J]. Information and Control, 1980, 144.
[20] CARLSSON C, FULLÉR R. On possibility mean value and variance of fuzzy numbers, fuzzy sets and systems [J]. Fuzzy Sets and Systems, 2001, 122:315-326.
[1] 何新华,万帆,胡文发,郑爱兵. 复杂风险变量随机模拟下的应急供应调度[J]. 山东大学学报(理学版), 2018, 53(5): 1-11.
[2] 何新华, 胡文发, 肖敏. 突发事件下应急服务供应链的期权协同决策[J]. 山东大学学报(理学版), 2015, 50(11): 81-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!