山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (1): 98-101.doi: 10.6040/j.issn.1671-9352.0.2016.154
郑秀云,史加荣
ZHENG Xiu-yun, SHI Jia-rong
摘要: 通过修正搜索方向,提出了一个具有充分下降的共轭梯度法用于求解无约束优化问题。该算法不依赖于任何线搜索,在每次迭代都能产生一个充分下降方向。在一定条件下,证明了此算法在Armijo线性搜索下的全局收敛性。数值实验结果表明所提出的算法是有效的。
中图分类号:
[1] FLETCHER R, REEVES C. Function minimization by conjugate gradients[J]. Computer Journal, 1964, 7(2):149-154. [2] POLAK E, RIBIERE G. Note sur la convergence de methodesdirections conjugees[J]. Revue Francaise Informat Recherche Operationelle, 1969, 16(3):35-43. [3] POLYAK B T. The conjugate gradient method in extreme problems[J]. USSR Computational Mathematics and Mathematical Physics, 1969, 9:94-112. [4] HESTENES M R, STIEFEL E. Methods of conjugate gradients for solving linear systems[J]. Journal of Research of National Bureau of Standards, 1952, 49:409-436. [5] DAI Yuhong, YUAN Yaxiang. A nonlinear conjugate gradient method with a strong global convergence property[J]. SIAM Journal on Optimization, 1999, 10(1):177-182. [6] BIRGIN E G, MARTIMEZ J M. A spectral conjugate gradient method for unconstrained optimization[J]. Applied Mathematics and Optimization, 2001, 43(2):117-128. [7] ZHANG Li, ZHOU Weijun, LI Donghui. Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo type 1ine search[J]. Numerische Mathematik, 2006, 104(4):561-572. [8] WAN Zhong, YANG Zhanlu, WANG Yalin. New spectral PRP conjugate gradient method for unconstrained optimization[J]. Applied Mathematics Letters, 2011, 24(1):16-22. [9] ZHANG Li. Two modified Dai-Yuan nonlinear conjugate gradient methods[J]. Numerical Algorithms, 2009, 50(1):1-16. [10] 董晓亮, 高岳林, 何郁波. 一类基于Armijo搜索的改进DY共轭梯度法及其全局收敛性[J]. 数值计算与计算机应用, 2011, 32(4): 253-258. DONG Xiaoliang, GAO Yuelin, HE Yubo. Global convergence of an improved DY conjugate gradient method with Armijo line search[J]. Journal on Numerical Methods and Computer Applications, 2011, 32(4):253-258. [11] 李敏,陈宇,屈爱平.一种充分下降的DY共轭梯度法及其收敛性[J].山东大学学报(理学版),2011, 46(7):101-105. LI Min, CHEN Yu, QU Aiping. A sufficient descent DY conjugate gradient method and its global convergence[J]. Journal of Shandong University(Natural Science), 2011, 46(7):101-105. [12] ZOUTENDIJK G. Nonlinear programming computational methods[M]. North-Holland, Amsterdam, 1970. [13] MORE J J, GARBOW B S, HILLSTROME K E. Testing unconstrained optimization software[J]. ACM Transactions on Mathematical Software, 1981, 7:17-41. |
[1] | 林穗华. Wolfe线搜索下的修正FR谱共轭梯度法[J]. 山东大学学报(理学版), 2017, 52(4): 6-12. |
[2] | 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16-23. |
[3] | 王开荣,王书敏. 具有充分下降性的修正型混合共轭梯度法[J]. J4, 2013, 48(09): 78-84. |
[4] | 冯琳1,2,段复建1,和文龙1. 基于简单二次函数模型的滤子非单调信赖域算法[J]. J4, 2012, 47(5): 108-114. |
[5] | 李敏,陈宇,屈爱平. 一种充分下降的DY共轭梯度法及其收敛性[J]. J4, 2011, 46(7): 101-105. |
[6] | 高宝,孙清滢. 基于Zhang H C非单调技术的修正HS共轭梯度算法[J]. J4, 2011, 46(7): 106-111. |
[7] | 程李晴1,2, 石巧连2. 一种新的混合共轭梯度算法[J]. J4, 2010, 45(6): 81-85. |
[8] | 程李晴. 一类共轭梯度法的全局收敛性[J]. J4, 2010, 45(5): 101-105. |
[9] | 王开荣,曹伟,王银河. Armijo型线搜索下的谱CD共轭梯度法[J]. J4, 2010, 45(11): 104-108. |
[10] | . 一类新的Wolfe线性搜索下的记忆梯度法[J]. J4, 2009, 44(7): 33-37. |
[11] | 孙敏 . 一种满足夹角性质的超记忆梯度方法[J]. J4, 2008, 43(6): 68-70 . |
[12] | 刘利英,李 莹, . 强Wolfe-Powell线搜索下共轭梯度法的全局收敛性[J]. J4, 2008, 43(5): 54-57 . |
|