J4 ›› 2011, Vol. 46 ›› Issue (7): 83-86.
• 电子技术与信息 • 上一篇 下一篇
张宁仙,郭敏*,马苗
收稿日期:
出版日期:
发布日期:
通讯作者:
作者简介:
基金资助:
国家自然科学基金资助项目 (10974130);中央高校基本科研业务费专项资金资助项目(GK200901006)
ZHANG Ning-xian, GUO Min*, MA Miao
Received:
Online:
Published:
摘要:
分别对3个不同品系果蝇的振翅声建立了AR模型,提取AR系数和白噪声序列的方差作为特征,然后用支持向量机(support vector machine, SVM)分类同种内的3个不同品系果蝇的振翅声。使用AIC准则确定AR模型的阶数,用Burg方法估计AR模型的参数,用重尾径向基函数作为支持向量机的核函数,实现对不同品系果蝇振翅声的特征提取和分类。实验结果表明3个品系的果蝇振翅声的分类正确率均达到了88%以上。
关键词: AR模型;支持向量机;果蝇振翅声
Abstract:
The AR model for three different strains of fruit fly wings vibration sound is established respectively. The AR coefficients and the variance of white noise sequence are extracted as the feature, then the sound of the three different strains of fruit fly wings vibration sound is classified by support vector machine(SVM). The order of AR model is determined by using AIC criterion, and the parameters of AR model is estimated by Burg method, and then the heavy tailed RBF is used as the kernel function in SVM to implement the feature extraction and classification of the different strains of fruit fly wings vibration sound. The experiomental results show that the classification accuracy rate of the three strains of fruit fly wings vibration sound is more than 88%.
Key words: AR model; support vector machine; fruit fly wings vibration sound
张宁仙,郭敏*,马苗. 基于AR模型和SVM的果蝇振翅声分类[J]. J4, 2011, 46(7): 83-86.
ZHANG Ning-xian, GUO Min*, MA Miao. Classification of fruit fly wings vibration sound based on the AR model and SVM[J]. J4, 2011, 46(7): 83-86.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: http://lxbwk.njournal.sdu.edu.cn/CN/
http://lxbwk.njournal.sdu.edu.cn/CN/Y2011/V46/I7/83
Cited