您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2011, Vol. 46 ›› Issue (8): 23-30.

• 论文 • 上一篇    下一篇

二维、三维空间Riesz 分数阶扩散方程的基本解

王学彬   

  1. 武夷学院数学与计算机系, 福建  武夷山 354300
  • 收稿日期:2011-03-12 出版日期:2011-08-20 发布日期:2011-09-08

Fundamental solutions of fractional-in-space diffusion equation with  Riesz fractional derivative in two and three dimensions

WANG Xue-bin   

  1. Department of Mathematics and Computer, Wuyi University, Wuyishan 354300, Fujian, China
  • Received:2011-03-12 Online:2011-08-20 Published:2011-09-08
  • About author:WANG Xuebin(1976- ), Male, Lecturer, his research mainly focuses on fractional calculus.Email:wxbnp@163.com
  • Supported by:

    Supported by the Natural Science Foundation of Fujian Province (2008J0204); Fujian Provincial Department of Education Category the Projects(JA09242); Wuyi University Special Research Fund for Young Teachers(xq201022)

摘要:

讨论二维、三维空间Riesz 分数阶扩散方程的解,用特征函数幂级数形式定义二维、三维分数阶拉普拉斯算子,并给出分数阶拉普拉斯算子与Riesz 分数阶导数的关系。最后用谱表示法导出二维、三维空间Riesz 分数阶扩散方程在齐次和非齐次情况下的在有界区间上满足一定初边值条件的基本解。

关键词:  Riesz 分数阶导数;空间分数阶扩散方程;RimannLiouville分数阶导数

Abstract:

The fundamental solutions of fractional-in-space diffusion equation is considered with Riesz fractional derivative (RFDE) in two and three dimensions. The existing definitions of the fractional Laplacian (two dimensions and three dimensions) are investigated and discussed by using eigenfunction expansion, and the relations between fractional Laplacian and Riesz fractional derivative are given. Finally,  the fundamental solutions of homogeneous and non-homogeneous RFDE with an initial and boundary condition is derived on a finite domain  using a spectral representation.
 

Key words: Riesz fractional derivative; fractional-in-space diffusion equation; Rimann-Liouville fractional derivative

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!