山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (1): 23-28.doi: 10.6040/j.issn.1671-9352.0.2016.316
马兰,李伟岸,尹天懿
MA Lan, LI Wei-an, YIN Tian-yi
摘要: 飞行冲突解脱是航空器安全运行的关键,粒子群优化(particle swarm optimization, PSO)算法和变邻域搜索(variable neighborhood search, VNS)算法都可以用于解决飞行冲突,但PSO算法接近最优解时收敛速度降低,VNS算法的全局搜索能力较差。为融合PSO算法全局搜索的快速收敛特性和VNS算法的局部搜索能力,提出了变邻域搜索改进的粒子群优化算法。仿真结果证明该算法能够快速搜索到全局最优解,继承了二者的优势,同时提高了最终解脱航迹的适应值,并减少了收敛时间。
中图分类号:
[1] 吴君,张京娟.采用遗传算法的多机自由飞行冲突解脱策略[J]. 智能系统学报, 2013, 8(1):16-20. WU Jun, ZHANG Jingjuan. Conflict resolution of multiple airplanes in free flight based on the genetic algorithm[J]. Journal of Intelligent Systems, 2013, 8(1):16-20. [2] 王洁宁, 袁志娟. 基于粒子群算法的飞行冲突解脱问题[J]. 中国民航大学学报, 2010, 28(4):1-4. WANG Jiening, YUAN Zhijuan. Study on resolution of flight conflicts based on particle swarm optimization[J]. Journal of Civil Aviation University of China, 2010, 28(4): 1-4. [3] GANG Xiao, BO Gu. An improved ant colony optimization approach for multi-aircraft horizontal escape maneuvers[C] //IEEE-AIAA Digital Avionics Systems Conference. New York: IEEE, 2012:14-18. [4] EMAMI H, DERAKHSHAN F. Multi-agent based solution for free flight conflict detection and resolution using particle swarm optimization algorithm[J]. Upb Scientific Bulletin, 2014, 76(3):49-64. [5] ZHANG L, SHAO X, ZHOU C, et al. Research on conflict resolution method based on particle swarm optimization in collaborative design[C] //Proceedings of the 6th World Congress On Intelligent Control And Automation(WCICA 2006). New York: IEEE, 2006, 1:3451-3455. [6] ALONSO-AYUSO A, ESCUDERO L F, MARTÍN-CAMPO F J, et al. VNS based algorithm for solving a 0-1 nonlinear nonconvex model for the collision avoidance in air traffic management[J]. Electronic Notes in Discrete Mathematics, 2012, 39(1):115-120. [7] ALONSO-AYUSO A, LAUREANO F, ESCUDERO, et al. A VNS metaheuristic for solving the aircraft conflict detection and resolution problem by performing turn changes [J]. Journal of Global Optimization, 2015, 63(3):583-596. [8] HANSEN P, MLADENOVIC N. Variable neighborhood search: principles and applications [J]. European Journal of Operational Research, 2001, 130(3): 449-467. [9] KENNEDY J, EBERHART R C. A discrete binary version of the particle swarm algorithm[C] //IEEE International Conference on Systems, Man and Cybernetics. Washington: IEEE Computer Society, 1997, 5:4104-4108. [10] 王树洋, 黄天民, 方新. 基于PSO-SVM的交通流量短时预测[J]. 重庆交通大学学报(自然科学版), 2012,31(4): 832-872. WANG Shuyang, HUANG Tianmin, FANG Xin. Short-time prediction of traffic flow on the basis of pso-svm[J].Journal of Chongqing Jiaotong University(Natural Science), 2012, 31(4): 832-872. [11] 潘全科,王文宏,朱剑英,等. 基于粒子群优化和变邻域搜索的混合调度算法[J].计算机继承制造系统, 2007, 13(2):323-328. PAN Quanke, WANG Wenhong, ZHU Jianying, et al. Hybrid heuristics based on particle swarm optimization and variable neighborhood search for job shop scheduling[J]. Computer Integrated Manufacturing System, 2007, 13(2):323-328. [12] 崔莉薇. 基于遗传粒子群算法的多机飞行冲突解脱研究[D]. 重庆:重庆大学, 2012. CUI Liwei. Air conflict resolution based on genetic algorithm and particle swarm optimization[D]. Chongqing: Chongqing University, 2012. |
[1] | 万智萍1,吕志民1,2*. 一种自适应物种寻优的无线Mesh网络QoS路由算法[J]. J4, 2013, 48(09): 10-16. |
[2] | 李彬1,2,李贻斌1,荣学文1. ELM-RBF神经网络的智能优化策略[J]. J4, 2010, 45(5): 48-51. |
[3] | 吴瑞海 董吉文 段琪庆. 变尺度混沌粒子群与小波的地基沉降预测应用[J]. J4, 2009, 44(11): 75-78. |
[4] | 张国英,沙 芸,江慧娜 . 基于粒子群优化的快速KNN分类算法[J]. J4, 2006, 41(3): 34-36 . |
|