您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (4): 6-12.doi: 10.6040/j.issn.1671-9352.0.2016.406

• • 上一篇    下一篇

Wolfe线搜索下的修正FR谱共轭梯度法

林穗华   

  1. 广西民族师范学院数学与计算机科学系, 广西 崇左 532200
  • 收稿日期:2016-09-02 出版日期:2017-04-20 发布日期:2017-04-11
  • 作者简介:林穗华(1973— ),女,硕士,副教授,研究方向为最优化方法及应用. E-mail:linsuihuah@163.com
  • 基金资助:
    广西高校科研重点项目(ZD2014143);广西重点培育学科(应用数学)建设项目(桂教科研[2013]16);广西民族师范学院科研项目(2013RCGG002)

A modified FR spectral conjugate gradient method with Wolfe line search

LIN Sui-hua   

  1. Department of Mathematics and Computer Science, Guangxi Normal University for Nationalities, Chongzuo 532200, Guangxi, China
  • Received:2016-09-02 Online:2017-04-20 Published:2017-04-11

摘要: 对无约束优化问题的谱共轭共轭梯度法,提出修正的FR共轭参数和谱参数,使每次迭代均自行产生下降方向,且这一下降性不依赖于任何线搜索条件。在常规假设下,证明了采用Wolfe线搜索的新算法具有全局收敛性。相关的数值实验结果表明该谱共轭梯度法是有效的。

关键词: 无约束优化, Wolfe线搜索, 谱共轭梯度法, 全局收敛

Abstract: A modified FR spectral conjugate gradient method is proposed for unconstrained optimization. This method can automatically generate descent direction at every iterations depending on no any line search. Under the conventional assumption, it is proved that the corresponding method with Wolfe line search is globally convergent. The numerical results show that the spectral conjugate gradient method is effective.

Key words: spectral conjugate gradient method, Wolfe line search, global convergence, unconstrained optimization

中图分类号: 

  • O221
[1] 戴彧虹,刘新为. 线性与非线性规划算法与理论[J]. 运筹学学报,2014,18(1):69-92. DAI Yuhong, LIU Xinwei. Advances in linear and nonlinear programming[J]. OR Transactions, 2014, 18(1):69-92.
[2] 简金宝,江羡珍,尹江华. 非线性共轭梯度法研究进展[J]. 玉林师范学院学报, 2016, 37(2):3-10. JIAN Jinbao, JIANG Xianzhen, YIN Jianghua. Research progress in nonlinear conjugate gradient method[J]. Journal of Yulin Normal University(Natural Science), 2016, 37(2):3-10.
[3] POWELL M J D. Nonconvex minimization calculations and the conjugate gradient method[M]. Berlin, Springer, 1984.
[4] GILBERT J C, NOCEDAL J. Global convergence property of conjugate gradient methods for optimization[J]. SIAM J Optim, 1992, 2(1):21-42.
[5] WEI Zengxin, YAO Shengwei, LIU Liying. The convergence properties of some new conjugate gradient methods[J]. Appl Math Comput, 2006(183):1341-1350.
[6] JIANG Xianzhen, JIAN Jinbao. Two modified nonlinear conjugate gradient methods with disturbance fators for unconstrained optimization[J]. Nonlinear Dyn, 2014, 77(1-2):387-394.
[7] HAGER W W, ZHANG Hongcao. A new conjugate gradient method with guaranteed descent and an efficient linear search[J]. SIAM J Optim, 2005, 16(1):170-192.
[8] YU Gaohang, GUAN Lutai, LI Guoyin. Global convergence of modified Polak-Ribiere-Polyak conjugate gradient methods with sufficient descent property[J]. J Ind Manag Optim, 2008, 4:565-579.
[9] 李敏, 陈宇, 屈爱平. 一种充分下降的DY共轭梯度法及其收敛性[J]. 山东大学学报(理学版), 2011,46(7):101-105,111. LI Min, CHEN Yu, QU Aiping. A sufficient descent DY conjugate gradient method and its global convergence[J]. Journal of Shandong University(Natural Science), 2011, 46(7):101-105, 111.
[10] TOUATI-AHMED D, STOREY C. Efficient hybrid conjugate gradient techniques[J]. J Optim Theory Appl, 1990, 64:379-397.
[11] 郑希锋,田志远,宋立温. Wolfe线搜索下一类混合共轭梯度法的全局收敛性[J].运筹学学报,2009,13(2):18-24. ZHENG Xifeng, TIAN Zhiyuan, SONG Liwen. The global convergence of a mixed conjugate gradient method with the Wolfe linear search[J]. OR Transactions, 2009, 13(2):18-24.
[12] 王开荣,高佩婷.建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6):16-23. WANG Kairong, GAO Peiting. Two mixed conjugate gradient methods based on DY[J]. Journal of Shandong University(Natural Science), 2016, 51(6):16-23.
[13] BIRGIN E G, MARTIMEZ J M. A spectral conjugate gradient method for unconstrained optimization[J]. Appl Math Optim, 2001, 43(2):117-128.
[14] ZHANG L, ZHOU W J, LI D H. Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search[J]. Numer Math, 2006, 104:561-572.
[15] 林穗华,黄海. 一个新的谱共轭梯度法[J]. 工程数学学报, 2014, 31(6):837-846. LIN Suihua, HUANG Hai. A new spectral conjugate gradient method[J]. Chinese Journal of Engineering Mathematics, 2014, 31(6):837-846.
[16] MORÈ J J, GARBOW B S, HILLSTROME K E. Testing unconstrained optimization software[J]. ACM Trans Math Software, 1981, 7:17-41.
[1] 郑秀云,史加荣. Armijo型线搜索下的全局收敛共轭梯度法[J]. 山东大学学报(理学版), 2017, 52(1): 98-101.
[2] 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16-23.
[3] 王开荣,王书敏. 具有充分下降性的修正型混合共轭梯度法[J]. J4, 2013, 48(09): 78-84.
[4] 冯琳1,2,段复建1,和文龙1. 基于简单二次函数模型的滤子非单调信赖域算法[J]. J4, 2012, 47(5): 108-114.
[5] 李敏,陈宇,屈爱平. 一种充分下降的DY共轭梯度法及其收敛性[J]. J4, 2011, 46(7): 101-105.
[6] 高宝,孙清滢. 基于Zhang H C非单调技术的修正HS共轭梯度算法[J]. J4, 2011, 46(7): 106-111.
[7] 程李晴1,2, 石巧连2. 一种新的混合共轭梯度算法[J]. J4, 2010, 45(6): 81-85.
[8] 程李晴. 一类共轭梯度法的全局收敛性[J]. J4, 2010, 45(5): 101-105.
[9] 王开荣,曹伟,王银河. Armijo型线搜索下的谱CD共轭梯度法[J]. J4, 2010, 45(11): 104-108.
[10] . 一类新的Wolfe线性搜索下的记忆梯度法[J]. J4, 2009, 44(7): 33-37.
[11] 孙敏 . 一种满足夹角性质的超记忆梯度方法[J]. J4, 2008, 43(6): 68-70 .
[12] 刘利英,李 莹, . 强Wolfe-Powell线搜索下共轭梯度法的全局收敛性[J]. J4, 2008, 43(5): 54-57 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!