山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (4): 6-12.doi: 10.6040/j.issn.1671-9352.0.2016.406
林穗华
LIN Sui-hua
摘要: 对无约束优化问题的谱共轭共轭梯度法,提出修正的FR共轭参数和谱参数,使每次迭代均自行产生下降方向,且这一下降性不依赖于任何线搜索条件。在常规假设下,证明了采用Wolfe线搜索的新算法具有全局收敛性。相关的数值实验结果表明该谱共轭梯度法是有效的。
中图分类号:
[1] 戴彧虹,刘新为. 线性与非线性规划算法与理论[J]. 运筹学学报,2014,18(1):69-92. DAI Yuhong, LIU Xinwei. Advances in linear and nonlinear programming[J]. OR Transactions, 2014, 18(1):69-92. [2] 简金宝,江羡珍,尹江华. 非线性共轭梯度法研究进展[J]. 玉林师范学院学报, 2016, 37(2):3-10. JIAN Jinbao, JIANG Xianzhen, YIN Jianghua. Research progress in nonlinear conjugate gradient method[J]. Journal of Yulin Normal University(Natural Science), 2016, 37(2):3-10. [3] POWELL M J D. Nonconvex minimization calculations and the conjugate gradient method[M]. Berlin, Springer, 1984. [4] GILBERT J C, NOCEDAL J. Global convergence property of conjugate gradient methods for optimization[J]. SIAM J Optim, 1992, 2(1):21-42. [5] WEI Zengxin, YAO Shengwei, LIU Liying. The convergence properties of some new conjugate gradient methods[J]. Appl Math Comput, 2006(183):1341-1350. [6] JIANG Xianzhen, JIAN Jinbao. Two modified nonlinear conjugate gradient methods with disturbance fators for unconstrained optimization[J]. Nonlinear Dyn, 2014, 77(1-2):387-394. [7] HAGER W W, ZHANG Hongcao. A new conjugate gradient method with guaranteed descent and an efficient linear search[J]. SIAM J Optim, 2005, 16(1):170-192. [8] YU Gaohang, GUAN Lutai, LI Guoyin. Global convergence of modified Polak-Ribiere-Polyak conjugate gradient methods with sufficient descent property[J]. J Ind Manag Optim, 2008, 4:565-579. [9] 李敏, 陈宇, 屈爱平. 一种充分下降的DY共轭梯度法及其收敛性[J]. 山东大学学报(理学版), 2011,46(7):101-105,111. LI Min, CHEN Yu, QU Aiping. A sufficient descent DY conjugate gradient method and its global convergence[J]. Journal of Shandong University(Natural Science), 2011, 46(7):101-105, 111. [10] TOUATI-AHMED D, STOREY C. Efficient hybrid conjugate gradient techniques[J]. J Optim Theory Appl, 1990, 64:379-397. [11] 郑希锋,田志远,宋立温. Wolfe线搜索下一类混合共轭梯度法的全局收敛性[J].运筹学学报,2009,13(2):18-24. ZHENG Xifeng, TIAN Zhiyuan, SONG Liwen. The global convergence of a mixed conjugate gradient method with the Wolfe linear search[J]. OR Transactions, 2009, 13(2):18-24. [12] 王开荣,高佩婷.建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6):16-23. WANG Kairong, GAO Peiting. Two mixed conjugate gradient methods based on DY[J]. Journal of Shandong University(Natural Science), 2016, 51(6):16-23. [13] BIRGIN E G, MARTIMEZ J M. A spectral conjugate gradient method for unconstrained optimization[J]. Appl Math Optim, 2001, 43(2):117-128. [14] ZHANG L, ZHOU W J, LI D H. Global convergence of a modified Fletcher-Reeves conjugate gradient method with Armijo-type line search[J]. Numer Math, 2006, 104:561-572. [15] 林穗华,黄海. 一个新的谱共轭梯度法[J]. 工程数学学报, 2014, 31(6):837-846. LIN Suihua, HUANG Hai. A new spectral conjugate gradient method[J]. Chinese Journal of Engineering Mathematics, 2014, 31(6):837-846. [16] MORÈ J J, GARBOW B S, HILLSTROME K E. Testing unconstrained optimization software[J]. ACM Trans Math Software, 1981, 7:17-41. |
[1] | 郑秀云,史加荣. Armijo型线搜索下的全局收敛共轭梯度法[J]. 山东大学学报(理学版), 2017, 52(1): 98-101. |
[2] | 王开荣,高佩婷. 建立在DY法上的两类混合共轭梯度法[J]. 山东大学学报(理学版), 2016, 51(6): 16-23. |
[3] | 王开荣,王书敏. 具有充分下降性的修正型混合共轭梯度法[J]. J4, 2013, 48(09): 78-84. |
[4] | 冯琳1,2,段复建1,和文龙1. 基于简单二次函数模型的滤子非单调信赖域算法[J]. J4, 2012, 47(5): 108-114. |
[5] | 李敏,陈宇,屈爱平. 一种充分下降的DY共轭梯度法及其收敛性[J]. J4, 2011, 46(7): 101-105. |
[6] | 高宝,孙清滢. 基于Zhang H C非单调技术的修正HS共轭梯度算法[J]. J4, 2011, 46(7): 106-111. |
[7] | 程李晴1,2, 石巧连2. 一种新的混合共轭梯度算法[J]. J4, 2010, 45(6): 81-85. |
[8] | 程李晴. 一类共轭梯度法的全局收敛性[J]. J4, 2010, 45(5): 101-105. |
[9] | 王开荣,曹伟,王银河. Armijo型线搜索下的谱CD共轭梯度法[J]. J4, 2010, 45(11): 104-108. |
[10] | . 一类新的Wolfe线性搜索下的记忆梯度法[J]. J4, 2009, 44(7): 33-37. |
[11] | 孙敏 . 一种满足夹角性质的超记忆梯度方法[J]. J4, 2008, 43(6): 68-70 . |
[12] | 刘利英,李 莹, . 强Wolfe-Powell线搜索下共轭梯度法的全局收敛性[J]. J4, 2008, 43(5): 54-57 . |
|