山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (9): 113-120.doi: 10.6040/j.issn.1671-9352.2.2015.228
祝升,周斌,朱湘
ZHU Sheng, ZHOU Bin, ZHU Xiang
摘要: 社交网络服务每天产生大量涉及众多话题的信息,并在影响力各异的用户群体推动下广泛传播。在IP(influence passivity)算法的基础上,提出了一种综合话题相似性与信息时效性的影响力用户发现算法EIP(extended influence-passivity)。该算法在转发网络上考虑用户间话题的相似性以及博文信息时效性,更加精准地建模和计算用户的影响力和消极性。基于新浪微博上爬取的约10万用户数据集上的实验验证,EIP影响力度量算法优于IP和TwitterRank等现有方法。
中图分类号:
[1] ROMERO D, GALUBA W, ASUR S, et al.Influence and passivity in social media[J]. Ssrn Electronic Journal, 2010, 6913(1):18-33. [2] KATZ E. The two-step flow of communication: An up-to-date report on an hypothesis[J]. Public Opinion Quarterly, 1957, 21(1):61-78. [3] YOUNG H P. The diffusion of innovations in social networks[J]. General Information, 2000, 413(1): 2329-2334. [4] KITSAK M, GALLOS L, HAVLIN S, et al. Identification of influential spreaders in complex networks[J]. Nature Physics, 2010, 6(11):888-893. [5] CHA M, HADDADI H, BENEVENUTO F, et al. Measuring user influence in twitter: the million follower fallacy[C] //Proceedings of the 4th International AAAI Conference on Weblogs and Social Media(ICWSM 2010).[S.l.] :AAAI Press, 2010:10-17. [6] CATALDI M, CARO L D, SCHIFANELLA C. Emerging topic detection on Twitter based on temporal and social terms evaluation[J]. Preceedings of 10th International Workshop on Multimedia Data Mining. NewYork: ACM, 2010:1-10. [7] TUNKELANG D. A Twitter analogy to pagerank[EB/OL]. [2015-03-26].http: //thenoisychannel.com/2009/01/13/atwitter-analog-to-pagemark/. [8] WENG J, LIM E P, JIANG J, et al. TwitterRank: finding topic-sensitive influential twitterers[J]. Proceedings of the 3rd ACM International Conference on Web Search and Data Mining-WSDM 2010.New Yok: ACM, 2010: 261-270. [9] DING Z, JIA Y, ZHOU B, et al. Mining topical influencers based on the multi relational network in micro-blogging sites[J]. China Communications, 2013, 10(1): 93-104. [10] KLEINBERG J. Authoritative sources in a hyperlinked environment[J]. Journal of the ACM, 1999, 46(5): 604-632. [11] 丁兆云, 周斌, 贾焰, 等. 微博中基于多关系网络的话题层次影响力分析[J].计算机研究与发展, 2013, 10: 2155-2175. DING Zhaoyun, ZHOU Bin, JIA Yan, et al. Topic Influence analysis based on the multi-relational network in microblogs[J]. Journal of Computer Research and Development, 2013, 10:2155-2175. |
[1] | 廖祥文,张凌鹰,魏晶晶,桂林,程学旗,陈国龙. 融合时间特征的社交媒介用户影响力分析[J]. 山东大学学报(理学版), 2018, 53(3): 1-12. |
[2] | 张中军,张文娟,于来行,李润川. 基于网络距离和内容相似度的微博社交网络社区划分方法[J]. 山东大学学报(理学版), 2017, 52(7): 97-103. |
[3] | 邓小方,钟元生,吕琳媛,王明文,熊乃学. 融合社交网络的物质扩散推荐算法[J]. 山东大学学报(理学版), 2017, 52(3): 51-59. |
[4] | 李宇溪,王恺璇,林慕清,周福才. 基于匿名广播加密的P2P社交网络隐私保护系统[J]. 山东大学学报(理学版), 2016, 51(9): 84-91. |
[5] | 张少群,魏晶晶,廖祥文,简思远,陈国龙. Twitter中的情绪传染现象[J]. 山东大学学报(理学版), 2016, 51(1): 71-76. |
[6] | 郭浩,陆余良,王宇,张亮. 基于信息传播的微博用户影响力度量[J]. J4, 2012, 47(5): 78-83. |
|