您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

J4 ›› 2013, Vol. 48 ›› Issue (09): 10-16.

• 论文 • 上一篇    下一篇

一种自适应物种寻优的无线Mesh网络QoS路由算法

万智萍1,吕志民1,2*   

  1. 1.中山大学新华学院, 广东 广州 510520; 2.中山大学信息科学与技术学院, 广东   广州 510275
  • 收稿日期:2013-02-28 出版日期:2013-09-20 发布日期:2013-09-25
  • 通讯作者: 吕志民(1946- ),男,教授,主要从事计算机控制系统应用于CAD方面的研究. Email:7620674@qq.com
  • 作者简介:万智萍(1980- ),男,讲师,硕士,主要研究方向为图像处理,嵌入式系统,无线传感网,物联网技术. Email:wzp888_0@126.com

A kind of adaptive species optimization of wireless Mesh network QoS routing algorithm

WAN Zhi-ping1, L Zhi-min1,2 *   

  1. 1. Xinhua College of Sun Yatsen University, Guangzhou 510520, Guangdong, China;
    2. School of Information Science and Technology, Sun Yatsen University, Guangzhou 510275, Guangdong, China
  • Received:2013-02-28 Online:2013-09-20 Published:2013-09-25

摘要:

 针对无线Mesh网络带宽、负载能量不均等情况引起的网络延迟,以及路由算法运算速度较慢等问题,提出了一种自适应物种寻优的无线Mesh网络QoS路由算法。该算法利用路径评价函数进行最佳节点路径的搜索并通过蚁群信息素更新规则来平衡网络负载,避免数据拥堵和传输延时,并结合量子行为粒子群优化算法的物种形成策略,提出一种领域最好位置的自适应搜寻方式,降低了网络延迟并提高了算法收敛速度。仿真实验表明,从网络延迟和算法收敛速度来看,该算法相比改进的蚁群QoS路由算法和基于遗传算法的QoS路由算法具有更良好的效果。

关键词: 无线Mesh网络;蚁群算法;量子行为粒子群优化算法

Abstract:

For the network latency that is caused by the inequalities of wireless Mesh network bandwidth and load energy, and low operation speed of the routing algorithm and so on, a kind of adaptive species optimization of Wireless Mesh Network QoS routing algorithm (AQPSO) was proposed. To avoid the transmission delay and congestion of the data, the algorithm uses route evaluation function to search the best node path and through ant pheromone updating rules to balance the network load. Meanwhile, combined with the speciation policy of quantum behavior particle swarm optimization algorithm, a best position field adaptive search pattern was put forward, which improved the convergence speed of the algorithm. Viewing from the network latency and the algorithm convergence speed, the simulation results show that the proposed algorithm has a better effect than the improved ant colony QoS routing algorithm and QoS routing algorithm based on genetic algorithm.

Key words: wireless Mesh network; ant colony algorithm; quantum behavior of particle swarm optimization

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!