您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 102-107.doi: 10.6040/j.issn.1671-9352.0.2015.116

• • 上一篇    下一篇

区间集上非交换剩余格的〈,(-overQ)〉-fuzzy滤子及其特征刻画

乔希民1,吴洪博2   

  1. 1.商洛学院数学与计算机应用学院, 陕西 商洛 726000;2.陕西师范大学数学与信息科学学院, 陕西 西安 710062
  • 收稿日期:2014-03-18 出版日期:2016-02-16 发布日期:2016-03-11
  • 作者简介:乔希民(1960— ),男,硕士,副教授,研究方向为非经典数理逻辑与格上拓扑学. E-mail:qiaoximin@163.com
  • 基金资助:
    国家自然科学基金资助项目(61572016);陕西省自然科学基础研究计划项目(2013JM1023);陕西省教育厅科研计划资助项目(11JK0512)

〈,(-overQ)〉-fuzzy filter and its characterization of the non-commutative residual lattices on the interval sets

QIAO Xi-min1, WU Hong-bo2   

  1. 1. School of Mathematics and Computer Application, Shangluo University, Shangluo 726000, Shaanxi, China;
    2. School of Mathematics and Information Science, Shaanxi Normal University, Xian 710062, Shaanxi, China
  • Received:2014-03-18 Online:2016-02-16 Published:2016-03-11

摘要: 以区间集思想作为研究工具,讨论非交换剩余格和滤子理论,引入区间集上非交换剩余格与区间集上非交换剩余格fuzzy滤子的概念,给出区间集上非交换剩余格〈,(-overQ)〉-fuzzy滤子的代数结构,进一步得到若干等价性特征刻画,并对表示定理的充分必要条件予以证明。

关键词: 非可换模糊逻辑, 区间集上非交换剩余格, 区间集, 特征刻画, (-overQ)〉-fuzzy滤子, 〈

Abstract: Taking the thought of interval sets as the research tool, the theories of non-commutative residual lattices are discussed on the interval sets and filters. The concepts of non-commutative residual lattices are introduced on interval sets and fuzzy filters of non-commutative residual lattices on interval sets. The algebraic structure of the 〈,(-overQ)〉-fuzzy filters of non-commutative residual lattices is provided on interval sets, and several equivalent characterization are received. A detailed demonstration for the necessary and sufficient conditions of the representation theorem is given.

Key words: non-commutative fuzzy logic, non-commutative residual lattices on the interval sets, characterization, 〈,(-overQ)〉-fuzzy filters, interval sets

中图分类号: 

  • O141
[1] LOTFL A. ZADEH. Fuzzy sets[J]. Information and Control, 1965, 8(3):338-353.
[2] ABRUSCI V M, RUET P. Non-commutative logic I: the multiplicative frequent[J]. Annals of Pure and Applied Logic, 2000, 101(1):29-64.
[3] RUET P. Non-commutative logicⅡ: sequent calculus andphase semantics[J]. Mathematical Structures in Computer Science, 2000, 10(2):277-312.
[4] HÁJEK P. Observations on non-commutative fuzzy logic[J]. Soft Computing, 2003, 8(1):38-43.
[5] HÁJEK P. Fuzzy logics with non-commutative conjunction[J]. Journal of Logic and Computation, 2003, 13(4):469-479.
[6] ZHANG Xiaohong, HE Huacan, XU Yang. Fuzzy logic system based on schweizer-sklar t-norm[J]. Science in China: Series F Information Sciences, 2006, 49(2):175-188.
[7] LEUSTEAN I. Non-commutative lukasiewitcz propositional logic[J]. Archive for Maehematical Logic, 2006, 45(1):191-213.
[8] 张小红.模糊逻辑及其代数分析[M].北京:科学出版社,2008. ZHANG Xiaohong. Fuzzy logic and algebraic analysis[M]. Beijing: Science Press, 2008.
[9] VOJTAS P. Fuzzy logic programming[J]. Fuzzy Set and Systems, 2001, 124:361-370.
[10] KRAJCI S, LENCSES R, AMEDIN J, et al. Non-commutativty and expressive deductive logic databases[J]. Lecture Notes in Computer Science, Springer-Verlag GmbH, 2002, 2424:149-160.
[11] ARESKI NAIT ABDALLAH, ALAIN LECOMTE. On expressing vague quantification and scalar implicatures in the logic of partial information[C] // Logical aspects of computational linguistics. Berlin Heidelberg: Springer-Verlag, 2005: 205-220.
[12] 中国科协学会学术部编.不确定性人工智能前沿理论与应用研究[M].北京:中国科学技术出版社,2014. Learn to academic department of China association for science and technology. Uncertainty in artificial intelligence theory and application research of the frontier[M]. Beijing: Science and Technology of China Press, 2014.
[13] ROSENFELD A. Fuzzy groups[J]. Journl of Mathematical Analysis and Applications, 1971, 35:512-517.
[14] PU Baoming, LIU Yingming. Fuzzy topologyⅠ:Neighborhood structure of a fuzzy point and Moore-Smith convergence[J]. Journal of Mathematical Analysis and Applications, 1980, 76(2):571-599.
[15] PU Baoming, LIU Yingming. Fuzzy topologyⅡ: product and quotient spaces[J]. Journal of Mathematical Analysis and Applications, 1980, 77(2):20-37.
[16] BHAKAT S K, DAS P. On the defmition of a fuzzy subgroup[J]. Fuzzy Sets Systems, 1992, 51:235-241.
[17] BHAKAT S K, DAS P. fuzzy subgroup[J]. Fuzzy Sets Systems, 1996, 80:359-368.
[18] BHAKAT S K, DAS P. Fuzzy subrings and ideals redefined[J]. Fuzzy Sets Systems, 1996, 81:383-393.
[19] LIAO Zuhua.(∈, ∈∨q(λ,μ))-fuzzy normal subgroup[J]. Fuzzy Systems and Mathematics, 2006, 20(5):47-53.
[20] YUAN Xuehai. Generalized fuzzy Subgroups and many-Valued Implications[J]. Fuzzy Sets and Systems, 2003, 138:205-211.
[21] YAO Yiyu. Interval sets and Interval-set Algebras[C] // The 8th IEEE International Conference on Cognitive informatics. Hong Kong: IEEE Computer Society, 2009:3 07-314.
[22] 姚一豫.区间集[M] //王国胤,李德毅, 姚一豫,等.云模型与粒计算.北京:科学出版社,2012:74-93. YAO Yiyu. Interval sets[M] // WANG Wguoyin, LI Deyi, YAO Yiyu, et al. Cloud model and granular computing. Beijing: Science Press, 2012: 74-93.
[23] YAO Yiyu.Two views of theory of rough sets in finite universes[J]. International Journal of Approximation Rersoning, 1996, 15(4):291-317.
[24] 王国俊.非经典数理逻辑与近似推理[M].2版.北京:科学出版社,2008. WANG Guojun. Nonclassical mathematical logic and approximate reasoning[M]. 2nd ed. Beijing: Science Press, 2008.
[25] 裴道武.基于三角模的模糊逻辑理论及其应用[M].北京:科学出版社,2013. PEI Daowu. Based on the triangle model of fuzzy logic theory and its application[M]. Beijing: Science Press, 2013.
[26] 刘春辉.BL-代数的区间值(∈,∈∨q)-模糊滤子理论[J]. 山东大学学报(理学版),2014,49(10):83-89. LIU Chunhui.(∈,∈∨q)-fuzzy filters in BL-algebras[J]. Journal of Shandong University(Natural Science), 2014, 49(10):83-89.
[27] 乔希民,张东翰.区间集上R0-代数的表示形式及其性质[J]. 重庆工商大学学报(自然科学版),2014,31(11):15-21. QIAO Ximin, ZHANG Donghan. The representation and properties of R0-algebra on interval sets[J]. Journal of Chongqing Technology and Business University(Natural Science Edition), 2014, 31(11):15-21.
[1] 张恩胜. 区间集概念格属性约简的组成与结构[J]. 山东大学学报(理学版), 2018, 53(8): 17-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!