您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (4): 9-18.doi: 10.6040/j.issn.1671-9352.0.2015.123

• • 上一篇    下一篇

Littlewood-Paley算子及其交换子在变指数Herz空间上的有界性

王杰,瞿萌,束立生   

  1. 安徽师范大学数学计算机科学学院, 安徽 芜湖 241003
  • 收稿日期:2015-03-24 出版日期:2016-04-20 发布日期:2016-04-08
  • 作者简介:王杰(1989— ), 女,硕士研究生,研究方向为调和分析. E-mail:wangjieahnu@163.com
  • 基金资助:
    国家自然科学基金资助项目(11471033);安徽省自然科学基金资助项目(1408085MA01);安徽高校省级自然科学研究重点项目(KJ2014A087)

Boundedness of the Littlewood-Paley operators and cummutators on the Herz spaces with variable exponents

WANG Jie, QU Meng, SHU Li-sheng   

  1. School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, Anhui, China
  • Received:2015-03-24 Online:2016-04-20 Published:2016-04-08

摘要: 研究了Littlewood-Paley积分算子(包括Lusin面积积分函数,Littlewood-Paley g函数和 g*λ函数)及其与BMO函数生成的高阶交换子在具有两个变指数p(·),α(·)的Herz空间上的有界性, 这里p(·),α(·)均满足一定的连续性条件

关键词: 变指数, 高阶交换子, Littlewood-Paley积分算子, Herz 空间

Abstract: The main result in the paper is the boundedness of the Littlewood-Paley integral operators(include Lusin area integral function, Littlewood-Paley g and g*λ)and its higher order commutators generated by BMO fucntions on the Herz spaces with two variable exponents p(·),α(·), where p(·),α(·) satisfies some continuous condition.

Key words: variable exponent, Littlewood-Paley integral operator, higher order commutator, Herz space

中图分类号: 

  • O174.2
[1] LU Shanzhen, YANG Dachun. The central BMO spaces and Littlewood-Paley operators[J]. Approx Theory Appl, 1995, 11(3):72-94.
[2] LI Xinwei, YANG Dachun. Boundedness of some sublinear operators on Herz spaces[J]. Illinois Journal of Mathematics, 1996, 40(3):484-501.
[3] LIU Lanzhe, LU Shanzhen, XU Jingshi. Boundedness of commutators of Littlewood-Paley operators[J]. Andvances in Mathematics, 2003, 32(4):473-480.
[4] 陈杰诚,丁勇,范大山.带变量核的Littlewood-Paley算子[J]. 中国科学:A辑数学, 2006, 36(1):38-51. CHEN Jiecheng, DING Yong, FAN Dashan.Littlewood-Paley operator with variable kernel[J].Science in China: Series A Mathematics, 2006, 36(1):38-51.
[5] 陈艳萍,丁勇.广义Morrey空间上带变量核的的Littlewood-Paley算子[J]. 数学物理学报, 2009, 29A(3):630-642. CHEN Yanping, DING Yong. Littlewood-Paley operator with variable kernel on generalized Morrey spaces[J]. Acta Mathematica: Scientia-Chinese series, 2009, 29A(3):630-642.
[6] XUE Qingying, DING Yong. Weighted estimates for multilinear commutators of the Littlewood-Paley operators[J].Science in China: Series A Mathematics, 2009, 52(9):1849-1868.
[7] Kovácik O, Rákosník J. On spaces Lp(x) and Wk,p(x)[J]. Czechoslovak Math J, 1991, 41(4):592-618.
[8] CRUZ-URIBE SFO D, FIORENZA A, MARTELL M J, et al. The boundedness of classical operators on variable Lp spaces[J]. Ann Acad Sci Fenn Math, 2006, 31(1):239-264.
[9] WANG Hongbin, FU Zunwei, LIU Zongguang. Higher-order commutators of Marcinkiewicz integrals on variable Lebesgue spaces[J]. Acta Math Sci, 2012, 32A(6):1092-1101.
[10] IZUKI M. Herz and amalgam spaces with variable exponent, the Haar wavelets and greediness of the wavelet system[J]. East Journal on Approximations, 2009, 15(1):87-109.
[11] IZUKI M. Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent[J]. Rend Circ Mat Palermo, 2010, 59(3):461-472.
[12] ALMEIDA A, DRIHEM D. Maximal, potential and singular type operators on Herz spaces with variable exponents[J]. J Math Anal Appl, 2012, 394(2):781-795.
[13] LU Yan, ZHU Yueping. Boundedness of multilinear Calderón-Zygmund singular operators on Morrey-Herz spaces with variable exponents[J]. Acta Mathematica Sinica: English Series, 2014, 30(7):1180-1194.
[14] WANG Lijuan, TAO Shuangping. Boundedness of Littlewood-Paley operators and their commutators on Herz-Morrey spaces with exponent[J]. Journal of Inequalities and Applications, 2014, 2014(1):227.
[15] DONG Baohua, XU Jingshi. New Herz type Besov and Triebel-Lizorkin spaces with variable exponents [J]. J of Function Spaces and Applications, 2012, 27. pages, id: 384593.
[16] IZUKI M. Vector-valued inequalities on Herz spaces and characterizations of Herz-Sobolev spaces with variable exponent[J]. Glasnik Mat, 2010, 45(2):475-503.
[17] WANG Liwei. Marcinkiewicz integral operators and commutators on Herz spaces with variable exponents[J]. J Function Space and Applications, 2014, id:430635.
[1] 张申贵. 四阶变指数椭圆方程Navier边值问题的多解性[J]. 山东大学学报(理学版), 2018, 53(2): 32-37.
[2] 赵欢,周疆. 变指数Herz型Hardy空间上的多线性Calderón-Zygmund算子交换子[J]. 山东大学学报(理学版), 2018, 53(10): 42-50.
[3] 马小洁,赵凯. 分数次Hardy算子交换子在变指数空间的加权有界性[J]. 山东大学学报(理学版), 2017, 52(11): 106-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!