您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (4): 53-58.doi: 10.6040/j.issn.1671-9352.0.2015.186

• • 上一篇    下一篇

元胞自动机中的Besicovitch-Eggleston型集合

彭涛涛,刘卫斌   

  1. 武汉大学数学与统计学院, 湖北 武汉 430072
  • 收稿日期:2015-04-23 出版日期:2016-04-20 发布日期:2016-04-08
  • 作者简介:彭涛涛(1992— ), 男, 硕士研究生, 研究方向为分形几何. E-mail:386019388@qq.com

Besicovitch-Eggleston type sets in cellular automata

PENG Tao-tao, LIU Wei-bin   

  1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, Hubei, China
  • Received:2015-04-23 Online:2016-04-20 Published:2016-04-08

摘要: 考虑了一类元胞自动机中的Besicovitch-Eggleston型集合。由于与某些移位系统等价,可以计算出这些集合的Hausdorff维数。

关键词: 符号空间, 元胞自动机, Hausdorff维数

Abstract: Consider a class of Besicovitch-Eggleston type sets associated cellular automata. Hausdorff dimensions of these sets are determined by tranforming them into some shift dynamics.

Key words: cellular automata, Hausdorff dimension, symbolic space

中图分类号: 

  • O174.12
[1] WALTERS P. An introduction to Ergodic theory[M] // Graduate Texts in Mathematics. New York: Springer, 2000.
[2] BESICOVITCH A S. On the sum of digits of real numbers represented in the dyadic system[J]. Mathematische Annalen, 1935, 110(1):321-330.
[3] EGGLESTON H G. The fractional dimension of a set defined by decimal properties, quarterly[J]. Journal of Mathematics Oxford Series, 1949, 47:31-40.
[4] XIE Y, WEN Z. Dimensions of modified Besicovitch-Eggleston sets[J]. Science in China, 2006, 49(2):245-254.
[5] 文志英. 分形几何的数学基础[M]. 上海:上海科技教育出版社,2000. WEN Zhiying. Mathematical foundation of fractal geometry[M]. Shanghai: Shanghai Scientific and Technological Education Publishing House, 2000.
[6] SHERESHEVSKY M A. Ergodic properties of certain surjective cellular automata[J]. Monatshefte Für Mathematik, 1992, 114(3-4):305-316.
[7] HEDLUND G A. Endomorphisms and automorphisms of the shift dynamical system[J]. Mathematical Systems Theory, 1969, 3(4):320-375.
[8] LIND Douglas, MARCUS Brian. An introduction to symbolic dynamics and coding[M]. Cambridge: Cambridge University Press, 1995.
[1] 张丰盘1, 汪俭彬2, 杜书德3. 生境丧失对空间囚徒困境博弈的影响[J]. J4, 2012, 47(5): 98-102.
[2] 李 望,孙永征, . 基于元胞自动机的新产品市场扩散模拟[J]. J4, 2008, 43(3): 92-96 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!