山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (4): 53-58.doi: 10.6040/j.issn.1671-9352.0.2015.186
彭涛涛,刘卫斌
PENG Tao-tao, LIU Wei-bin
摘要: 考虑了一类元胞自动机中的Besicovitch-Eggleston型集合。由于与某些移位系统等价,可以计算出这些集合的Hausdorff维数。
中图分类号:
[1] WALTERS P. An introduction to Ergodic theory[M] // Graduate Texts in Mathematics. New York: Springer, 2000. [2] BESICOVITCH A S. On the sum of digits of real numbers represented in the dyadic system[J]. Mathematische Annalen, 1935, 110(1):321-330. [3] EGGLESTON H G. The fractional dimension of a set defined by decimal properties, quarterly[J]. Journal of Mathematics Oxford Series, 1949, 47:31-40. [4] XIE Y, WEN Z. Dimensions of modified Besicovitch-Eggleston sets[J]. Science in China, 2006, 49(2):245-254. [5] 文志英. 分形几何的数学基础[M]. 上海:上海科技教育出版社,2000. WEN Zhiying. Mathematical foundation of fractal geometry[M]. Shanghai: Shanghai Scientific and Technological Education Publishing House, 2000. [6] SHERESHEVSKY M A. Ergodic properties of certain surjective cellular automata[J]. Monatshefte Für Mathematik, 1992, 114(3-4):305-316. [7] HEDLUND G A. Endomorphisms and automorphisms of the shift dynamical system[J]. Mathematical Systems Theory, 1969, 3(4):320-375. [8] LIND Douglas, MARCUS Brian. An introduction to symbolic dynamics and coding[M]. Cambridge: Cambridge University Press, 1995. |
[1] | 张丰盘1, 汪俭彬2, 杜书德3. 生境丧失对空间囚徒困境博弈的影响[J]. J4, 2012, 47(5): 98-102. |
[2] | 李 望,孙永征, . 基于元胞自动机的新产品市场扩散模拟[J]. J4, 2008, 43(3): 92-96 . |
|