您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (04): 36-41.doi: 10.6040/j.issn.1671-9352.0.2014.482

• 论文 • 上一篇    下一篇

模糊完备格上模糊G-理想和模糊Galois伴随之间的一一对应

沈冲, 姚卫   

  1. 河北科技大学理学院, 河北 石家庄 050018
  • 收稿日期:2014-11-04 修回日期:2015-03-03 出版日期:2015-04-20 发布日期:2015-04-17
  • 通讯作者: 姚卫(1979-),男,副教授,研究方向为格上拓扑学.E-mail:yaowei0516@163.com E-mail:yaowei0516@163.com
  • 作者简介:沈冲(1989-),男,硕士研究生,研究方向为格上拓扑学.E-mail:shenchong0520@163.com
  • 基金资助:
    国家自然科学基金资助项目(11201112);河北省自然科学基金资助项目(A2014403008);河北省高校百名优秀创新人才支持计划(Ⅱ)(BR2-210);河北省首批青年拔尖人才支持计划

A one-to-one correspondence between fuzzy G-ideals and fuzzy Galois connections on fuzzy complete lattices

SHEN Chong, YAO Wei   

  1. Department of Mathematics, Hebei University of Science and Technology, Shijiazhuang 050018, Hebei, China
  • Received:2014-11-04 Revised:2015-03-03 Online:2015-04-20 Published:2015-04-17

摘要: 以交换单位quantale为取值格,研究了模糊完备格上的模糊G-理想.首先,给出了模糊G-理想的定义,证明了由X×Y上的所有模糊G-理想构成的集合在包含度下是一个模糊完备格. 其次,研究了模糊G-理想和模糊Galois伴随之间的关系,证明了由X×Y上的模糊G-理想构成的模糊完备格与XY之间的模糊Galois伴随构成的模糊完备格相互同构.

关键词: 交换单位quantale, 模糊完备格, 模糊G-理想, 模糊Galois伴随

Abstract: This paper deals with fuzzy G-ideals on fuzzy complete lattices. Firstly, the concept of fuzzy G-ideals is defined and it is proved that the set of all fuzzy G-ideals of X×Y is a fuzzy complete lattice with respect to fuzzy in clusion order. Secondly, by making use of the intrinsic fuzzy inclusion orders on fuzzy G-ideals, the relationship between fuzzy Galois connections and fuzzy G-ideals is studied. It is shown that the fuzzy poset of fuzzy Galois connections between fuzzy complete lattices X and Y is order-isomorphic to the fuzzy poset of all fuzzy G-ideals of X×Y.

Key words: fuzzy G-ideal, fuzzy Galois connection, fuzzy complete lattice, commutative unital quantale

中图分类号: 

  • O159
[1] SCHMIDT J. Beitraezur filter theorie[J]. II, Mathematische Nachrichten, 1953, 10(1):197-232.
[2] ORE O. Galois connexions[J]. Transactions of the American Mathematical Society, 1944, 55(0):493-513.
[3] SHMUELY Z. The structure of Galois connections[J]. Pacific J Math, 1974, 54(2):209-225.
[4] PICADO J. The quantale of Galois connections[J]. Algebra Universalis, 2004, 52(4):527-540.
[5] YAO Wei, LU Lingxia. Fuzzy Galois connections on fuzzy posets[J]. Mathematical Logic Quarterly, 2009, 55(1):105-112.
[6] ROSENTHAL K I. Quantales and their applications[M]. New York: Addison Wesley Longman, 1990.
[7] LAI Hongliang, ZHANG Dexue. Complete and directed complete Ω-categories[J]. Theoretical Computer Science, 2007, 388(1-3):1-25.
[8] BELOHLAVEK R. Fuzzy relation systems: foundations and principles[M]. New York: Kluwer Academic Publishers, 2002.
[9] GOGUEN J A. L-fuzzy sets[J]. Journal of Mathematical Analysis and Applications, 1967, 18(1):145-174.
[10] ZHANG Qiye, FAN Lei. Continuity in quantitative domains[J]. Fuzzy Sets and Systems, 2005, 154(1):118-131.
[11] ZHANG Qiye, XIE Weixian. Section-retraction-pairs between fuzzy domains[J]. Fuzzy Sets and Systems, 2007, 158(1):99-114.
[12] BELOHLAVEK R. Concept lattices and order in fuzzy logic[J]. Annals of Pure and Applied Logic, 2004, 128(1-3):227-298.
[13] ZHANG Dexue. An enriched category approach to many valued topology[J]. Fuzzy Sets and Systems, 2007, 158(4):1-25.
[1] 周异辉1,马崛2. 模糊完备格范畴中的乘积和余积[J]. J4, 2012, 47(8): 122-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!