山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (04): 63-66.doi: 10.6040/j.issn.1671-9352.0.2014.327
何雪, 田双亮
HE Xue, TIAN Shuang-liang
摘要: 设G是具有顶点集V(G)和边集E(G)的简单图.如果G的一正常边染色σ满足对任意uv∈E(G),有Cσ(u)≠Cσ(v),其中Cσ(u)为点u的关联边所染颜色构成的集合,则称σ为G的邻点可区别边染色.如果G的一正常全染色σ满足对任意uv∈E(G),有Sσ(u)≠Sσ(v),其中Sσ(u)表示点u及u的关联边所染颜色构成的集合,则称σ为G的邻点可区别全染色.图G的邻点可区别边(或全)染色所需的最少的颜色数,称为G的邻点可区别边(或全)色数,并记为χ'as(G)(或χat(G)).给出了图G的倍图D(G)的以上两个参数的上界,并对完全图与树,确定了它们的倍图的邻点可区别边色数与全色数的精确值.
中图分类号:
[1] ZHANG Zhongfu, LIU Linzhong, WANG Jianfang. Adjacent strong edge coloring of graphs[J]. Applied Mathematics Letters, 2002, 15:623-626. [2] 张忠辅, 陈祥恩, 李敬文,等. 关于图的邻点可区别全染色[J]. 中国科学:A辑, 2005, 48(3):289-299. ZHANG Zhongfu, CHEN Xiang'en, LI Jingwen, et al. On adjacent-vertex-distinguishing total coloring of graphs[J]. Science in China: Ser. A, 2005, 48(3):289-299. [3] 张忠辅, 仇鹏翔, 张东翰,等. 图的倍图与补倍图[J]. 数学进展, 2008, 37(3):303-310. ZHANG Zhongfu, QIU Pengxiang, ZHANG Donghan, et al. The double graph and the complement double graph of a graph[J]. Advances in Mathematics, 2008, 37(3):303-310. [4] BALISTER P N, GYÖRI E, LEHEL J, et al. Adjacent vertex distinguishing edge-colorings[J]. SIAM J. Discrete Math, 2007, 21(1):237-250. [5] TIAN Shuangliang, CHEN Ping, SHAO Yabin, et al. Adjacent vertex distinguishing edge-colorings and total-colorings of the cartesian product of graphs[J]. Control and Optimization, 2014, 4(1):49-58. [6] CHEN Xiang'en, ZHANG Zhongfu. Adjacent vertex distinguishing total chromatic number of Pm×Kn[J]. Journal of Mathematical Research and Exposition, 2006, 26(3):489-494. [7] BARIL J-L, KHEDDOUCI H, TOGNI O. Adjacent vertex distinguishing edge-colorings of meshes and hypercubes[J]. Australasian Journal of Combinatorics, 2006, 35:89-102. [8] CHEN Meirun, GUO Xiaofeng. Adjacent vertex-distinguishing edge and total chromatic numbers of hypercubes[J]. Information Processing Letters, 2009, 109:599-602. [9] 田双亮, 陈萍. 两类积图的邻点可区别全染色[J]. 数学研究与评论, 2007, 27(4):733-737. TIAN Shuangliang, CHEN Ping. On the adjacent vertex-distinguishing total coloring of two classes of product graph[J]. Journal of Mathematical Research and Exposition, 2007, 27(4):733-737. [10] 田京京, 杨立夫, 王树勋,等. 扇的倍图的邻点可区别边色数[J]. 数学的实践与认识, 2008, 38(15):221-224. TIAN Jingjing, YANG Lifu, WANG Shuxun, et al. The chromatic number of adjacent-strong edge coloring of the double graph D(Fm)[J]. Mathematics in Practice and Theory, 2008, 38(15):221-224. [11] 苏旺辉, 刘永平, 谢继国,等. 完全图的倍图的邻点可区别全染色[J]. 兰州理工大学学报, 2008, 34(3):166-167. SU Wanghui, LIU Yongping, XIE Jiguo, et al. Distinguishable total coloring of adjacent vertex of doubled complete graphs[J]. Journal of Lanzhou University of Technology, 2008, 34(3):166-167. [12] BONDY J A, MURTY U S R. Graph theory with applications[M]. New York: American Elsevier, 1976. [13] YAP H P. Total Coloring of graph[M]. New York: Springer Verlag, 1996. |
[1] | 李敬文, 贾西贝, 董威, 李小慧, 闫光辉. 图的邻点可区别全染色算法[J]. 山东大学学报(理学版), 2015, 50(02): 14-21. |
[2] | 张芳红1, 王治文2, 陈祥恩1*,姚兵1. K5∨Kt邻点可区别全色数[J]. J4, 2012, 47(12): 37-40. |
[3] | 李泽鹏1,王治文2, 陈祥恩1*. 平面图的邻点可区别全染色[J]. J4, 2011, 46(4): 4-8. |
[4] | 文飞1,王治文2, 王鸿杰3, 包世堂4, 李沐春1*,张忠辅1. 若干补倍图的点可区别全染色[J]. J4, 2011, 46(2): 45-50. |
[5] | 程辉,王志勇. 图的邻点强可区别的EI-全染色[J]. J4, 2010, 45(6): 18-22. |
[6] | 朱恩强1,王治文2,张忠辅1. 若干倍图的Smarandachely邻点边染色[J]. J4, 2009, 44(12): 25-29. |
[7] | 田双亮 . 若干广义Petersen图的邻点可区别全染色[J]. J4, 2008, 43(9): 42-44 . |
[8] | 程 辉,姚 兵,张忠辅, . 联图 Ws∨Km,n的邻点可区别全色数[J]. J4, 2007, 42(6): 81-86 . |
|