您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (11): 104-112.doi: 10.6040/j.issn.1671-9352.0.2014.443

• 论文 • 上一篇    下一篇

一个新四维光滑四翼超混沌系统及电路实现

王杰智1, 李航2, 王蕊3, 王鲁4, 王晏超5   

  1. 1. 中国民航大学理学院, 天津 300300;
    2. 中国民航大学经济与管理学院, 天津 300300;
    3. 中国民航大学航空自动化学院航空电气系, 天津 300300;
    4. 山东国强五金科技有限公司总工办, 山东 乐陵 253600;
    5. 中国东方航空股份有限公司工程技术公司维修管理部, 上海 200335
  • 收稿日期:2014-10-09 修回日期:2015-02-11 出版日期:2015-11-20 发布日期:2015-12-09
  • 作者简介:王杰智(1978-),女,博士,讲师,研究方向为混沌分析和反控制研究.E-mail:wjzh197845@163.com
  • 基金资助:
    国家自然科学基金资助项目(11472298,11102226);中央高校基本科研业务费专项资金资助项目(ZXH2010D011,ZXH2012B003,ZXH2012K002);中国民航大学科研启动基金资助项目(07QD05X)

A new four-dimensional smooth four-wing hyperchaotic system and its circuit implementation

WANG Jie-zhi1, LI Hang2, WANG Rui3, WANG Lu4, WANG Yan-chao5   

  1. 1. College of Science, Civil Aviation University of China, Tianjin 300300, China;
    2. Economics and Management College, Civil Aviation University of China, Tianjin 300300, China;
    3. College of Aeronautical Automation, Civil Aviation University of China, Tianjin 300300, China;
    4. Chief Engineer Office, Shandong Guoqiang Hardware Technology Cor. Ltd, Leling 253600, Shandong, China;
    5. Maintenance Management Department of Engineering Technology Company, China Eastern Airlines Cor. Ltd, Shanghai 200335, China
  • Received:2014-10-09 Revised:2015-02-11 Online:2015-11-20 Published:2015-12-09

摘要: 利用非线性状态反馈控制法,提出了一个新的具有较大正Lyapunov指数的四维光滑自治超混沌系统。该系统具有大范围的四翼超混沌区域。讨论了系统平衡点的稳定性。通过Lyapunov指数、分岔图及Poincaré截面分析了系统的动力学行为,并用相图展示了四翼混沌吸引子和几种不同形状的四翼超混沌吸引子。随着参数的不同,该系统还可以历经拟周期和周期状态。最后给出了典型超混沌吸引子的电路实现。

关键词: 四翼吸引子, Lyapunov指数, Poincaré, 截面, 电路实现, 超混沌系统

Abstract: Using nonlinear state feedback control, a new four-dimensional smooth autonomous hyperchaotic system was constructed with large positive Lyapunov exponent. This system had larger four-wing hyperchaotic region. The stability of equilibria was discussed. The dynamic behaviors of this system were analysed through Lyapunov exponents, bifurcation diagrams and Poincaré sections. The four-wing chaotic attractor and hyperchaotic attractors were displayed by phase portraits. With various parameters, this system still underwent quasi-periodic orbits and periodic orbits. An electronic circuit is given to implement the typical hyperchaotic attractor.

Key words: Lyapunov exponent, four-wing attractor, section, circuit implementation, Poincaré, hyperchaotic system

中图分类号: 

  • O415.5
[1] RÖSSLER Otto E. An equation for hyperchaos[J]. Physics Letters A, 1979, 71(2/3):155-157.
[2] LI Yuxia, CHEN Guanrong, TANG Wallace K S. Controlling a unified chaotic system to hyperchaotic[J]. IEEE Transactions on Circuits and Systems-II, 2005, 52(4):204-207.
[3] WANG Jiezhi, CHEN Zengqiang, YUAN Zhuzhi. The generation of a hyperchaotic system based on a three-dimensional autonomous chaotic system[J]. Chinese Physics, 2006, 15(6):1216-1225.
[4] WANG Faqiang, LIU Chongxin. Hyperchaos evolved from the Liu chaotic system[J]. Chinese Physics, 2006, 15(5):963-968.
[5] WANG Jiezhi, CHEN Zengqiang, YUAN Zhuzhi. The generation and analysis of a new four-dimensional hyperchaotic system[J]. International Journal of Modern Physics C, 2007, 18(6):1013-1024.
[6] 王兴元, 王明军. 超混沌Lorenz系统[J]. 物理学报, 2007, 56(9):5136-5141. WANG Xingyuan, WANG Mingjun. Hyperchaotic Lorenz system[J]. Acta Physica Sinica, 2007, 56(9):5136-5141.
[7] CHEN Zengqiang, YANG Yong, QI Guoyuan, et al. A novel hyperchaos system only with one equilibrium[J]. Physics Letters A, 2007, 360(6):696-701.
[8] GAO Tiegang, CHEN Guanrong, CHEN Zengqiang, et al. The generation and circuit implementation of a new hyper-chaos based upon Lorenz system[J]. Physics Letters A, 2007, 361(1-2):78-86.
[9] WU Wenjuan, CHEN Zengqiang, YUAN Zhuzhi. The evolution of a novel four-dimensional autonomous system:Among 3-torus, limit cycle, 2-torus, chaos and hyperchaos[J]. Chaos, Solitons and Fractals, 2009, 39(5):2340-2356.
[10] LIU Minghua, FENG Jiuchao, TSE Chi K. A new hyperchaotic system and its circuit implementation[J]. International Journal of Bifurcation and Chaos, 2010, 20(4):1201-1208.
[11] 张伟强,刘扬正. 统一超混沌系统的构建与电路实现[J]. 山东大学学报:理学版, 2011, 46(7):30-34. ZHANG Weiqiang, LIU Yangzheng. Generation and circuit implementation of a unified hyperchaotic system[J]. Journal of Shandong University:Natural Science, 2011, 46(7):30-34.
[12] 高智中. 一个新的四维超混沌系统及其分析[J]. 武汉大学学报:理学版, 2011, 57(3):201-204. GAO Zhizhong. A novel four-dimensional hyperchaotic system and its analysis[J]. Journal of Wuhan University:Natural Science Edition, 2011, 57(3):201-204.
[13] LI Chunlai, XIONG Jianbin, LI Wen. A new hyperchaotic system and its generalized synchronization[J]. Optik, 2014, 125:575-579.
[14] 杨敏, 俞建宁, 张建刚, 等. 一个新混沌纠缠系统的构造及动力学分析[J]. 河北师范大学学报:自然科学版, 2014, 38(3):245-249. YANG Min, YU Jianning, ZHANG Jiangang, et al. Construction and dynamical analysis of a new chaos entanglement system[J]. Journal of Hebei Normal University:Natural Science Edition, 2014, 38(3):245-249.
[15] YU Simin, MA Zaiguang, QIU Shuisheng. Generation and synchronization of n-scroll chaotic and hyperchaotic attractors in fourth-order systems[J]. Chinese Physics, 2004, 13(3):317-328.
[16] GRASSI Giuseppe, SEVERANCE Frank L, MASHEV Emil D, et al. Generation of a four-wing chaotic attractor by two weakly-coupled Lorenz systems[J]. International Journal of Bifurcation and Chaos, 2008, 18(7):2089-2094.
[17] 胡国四. 一类具有四翼吸引子的超混沌系统[J]. 物理学报, 2009, 58(6):3734-3741. HU Guosi. A family of hyperchaotic systems with four-wing attractors[J]. Acta Physica Sinica, 2009, 58(6):3734-3741.
[18] 王忠林, 邓斌, 侯承玺, 等. 四翼Liu 混沌系统的设计与电路实现[J]. 山东大学学报:理学版, 2010, 45(11):43-46. WANG Zhonglin, DENG Bin, HOU Chengxi, et al. Design and circuit realization of a four-wing Liu chaotic system[J]. Journal of Shandong University:Natural Science, 2010, 45(11):43-46.
[19] YU Simin, TANG W K S, L Jinhu, et al. Design and implementation of multi-wing butterfly chaotic attractors via Lorenz-type systems[J]. International Journal of Bifurcation and Chaos, 2010, 20(1):29-41.
[20] 刘崇新. 一个超混沌系统及其分数阶电路仿真实验[J]. 物理学报, 2007, 56(12):6865-6873. LIU Chongxin. A hyperchaotic system and its fractional order circuit simulation[J]. Acta Physica Sinica, 2007, 56(12):6865-6873.
[21] 王忠林, 姚福安, 李祥峰. 基于FPGA 的一个超混沌系统设计与电路实现[J]. 山东大学学报:理学版, 2008, 43(12):93-96. WANG Zhonglin, YAO Fuan, LI Xiangfeng. Design and realization of a hyperchaotic system based FPGA[J]. Journal of Shandong university:Natural Science, 2008, 43(12):93-96.
[22] CANG Shijian, QI Guoyuan, CHEN Zengqiang. A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system[J]. Nonlinear Dyn, 2010, 59:515-527.
[23] ZHANG Jianxiong, TANG Wansheng. A novel bounded 4D chaotic system[J]. Nonlinear Dyn, 2012, 67:2455-2465.
[24] XUE Wei, QI Guoyuan, MU Jingjing, et al. Hopf bifurcation analysis and circuit implementation for a novel four-wing hyper-chaotic system[J]. Chin Phys B, 2013, 22(8):329-336.
[25] WANG Jiezhi, ZHANG Qing, CHEN Zengqiang, et al. Local bifurcation analysis and ultimate bound of a novel 4D hyper-chaotic system[J]. Nonlinear Dynamics, 2014, 78(4):2517-2531.
[26] QI Guoyuan, CHEN Guanrong, van WYK Michal Antonie, et al. A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system[J]. Chaos, Solitons and Fractals, 2008, 38(3):705-721.
[1] 高珍珍, 杨士林, 阿布都卡的·吾甫. Anick分解和量子群Uq(sl2)的一些同调性质[J]. 山东大学学报(理学版), 2014, 49(10): 17-27.
[2] 张伟强,刘扬正*. 统一超混沌系统的构建与电路实现[J]. J4, 2011, 46(7): 30-34.
[3] 王忠林1,邓 斌2,侯承玺2,姚福安2. 四翼Liu混沌系统的设计与电路实现[J]. J4, 2010, 45(11): 43-46.
[4] 王忠林 姚福安 李祥峰. 基于FPGA的一个超混沌系统设计与电路实现[J]. J4, 2008, 43(12): 93-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!