山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (12): 98-101.doi: 10.6040/j.issn.1671-9352.0.2014.480
贾玲1, 陈笑缘2
JIA Ling1, CHEN Xiao-yuan2
摘要: 证明了Yetter-Drinfeld Hopf代数的对偶定理,得到了对任意交换Yetter-Drinfeld Hopf代数L来说L#L* 都是半单代数的结论,从而发展了Blattner和Montgomery得到的经典Hopf代数对偶定理。
中图分类号:
[1] RASFORD D. The structure of Hopf algebras with a projection[J]. J Algebra, 1982, 95:322-347. [2] LI Libin, ZHANG Pu. Twisted Hopf algebras, Ringel-Hall algebras and Green's category[J]. J Algebra, 2000, 231:713-743. [3] DOI Y. Hopf modules in Yetter-Drinfeld categories[J]. Comm Algebra, 1998, 26(9):3057-3070. [4] Van den Bergh M. A duality theorem for Hopf algebras[M]// Methods in Ring Theory. Antwerp, Belgium: Kluwer Academic Publishers, 1984: 517-522. [5] BLATTER R, Montgomery S. A duality theorem for Hopf module algebras[J]. J Algebra, 1985, 95:153-172. [6] SCHAUENBURG P. Hopf modules and Yetter-Drinfeld modules[J]. J Algebra, 1994, 169:874-890. [7] JIA Ling. The structure theorems for Yetter-Drinfeld comodule agebras[J]. Electronic Research Announcements in Mathematical Science, 2013, 20:31-42. |
[1] | 郭双建,李怡铮. 拟Hopf代数上BHQ何时是预辫子monoidal范畴[J]. 山东大学学报(理学版), 2017, 52(12): 10-15. |
|