山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 89-93.doi: 10.6040/j.issn.1671-9352.0.2015.235
王超
WANG Chao
摘要: 引入了上三角矩阵Artin代数Λ=(A M0 B)上的余相容双模的定义,刻画了M是余相容(A,B)-双模条件下,有限生成Gorenstein内射Λ-模的范畴Ginj(Λ)。
中图分类号:
[1] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220:611-633. [2] ZHANG Pu. Gorenstein projective modules and symmetric recollements[J]. J Algebra, 2013, 388:65-80. [3] ANDERSON F W, FULLER K R. Rings and categories of modules[M]. New York: Springer-Verlag, 1992. [4] AUSLANDER M, REITEN I, SMAL S O. Representation theory of artin algebras[M]. Cambridge: Cambridge Univ Press, 1995. [5] BELIGIANNIS A. On algebras of finite Cohen-Macaulay type[J]. Adv Math, 2011, 226:1973-2019. [6] HAPPEL D. Triangulated categories in representation theory of finite dimensional algebras[M]. Gambridge: Cambridge Univ Press, 1988. [7] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000. [8] HOLM H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2004, 189:167-193. [9] YANG Xiaoyan, LIU Zhongkui. Strongly Gorenstein projective, injective and flat modules[J]. J Algebra, 2008, 320:2659-2674. |
[1] | 王欣欣. 强Ω-Gorenstein内射模[J]. J4, 2013, 48(2): 23-26. |
|