您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (2): 89-93.doi: 10.6040/j.issn.1671-9352.0.2015.235

• • 上一篇    下一篇

上三角矩阵Artin代数上的Gorenstein内射模

王超   

  1. 西北师范大学数学与统计学院, 甘肃 兰州 730070
  • 收稿日期:2015-05-14 出版日期:2016-02-16 发布日期:2016-03-11
  • 作者简介:王超(1988— ), 男, 硕士研究生, 研究方向为同调代数. E-mail:wangchao0314math@163.com
  • 基金资助:
    国家自然科学基金资助项目(11361051)

Gorenstein injective modules over upper triangular matrix Artin algebras

WANG Chao   

  1. Department of Mathematics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2015-05-14 Online:2016-02-16 Published:2016-03-11

摘要: 引入了上三角矩阵Artin代数Λ=(A M0 B)上的余相容双模的定义,刻画了M是余相容(A,B)-双模条件下,有限生成Gorenstein内射Λ-模的范畴Ginj(Λ)。

关键词: 上三角矩阵Artin代数, Gorenstein内射模, 余相容双模

Abstract: Let Λ=(A M0 B)be an Artin algebra. The definition of the cocompatible bimodule is introduced, and the category Ginj(Λ)of the finitely generated Gorenstein injective Λ-modules under the condition that M is a cocompatible (A,B)-bimodule are described.

Key words: Gorenstein injective module, cocompatible bimodule, triangular matrix Artin algebra

中图分类号: 

  • O153.3
[1] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Math Z, 1995, 220:611-633.
[2] ZHANG Pu. Gorenstein projective modules and symmetric recollements[J]. J Algebra, 2013, 388:65-80.
[3] ANDERSON F W, FULLER K R. Rings and categories of modules[M]. New York: Springer-Verlag, 1992.
[4] AUSLANDER M, REITEN I, SMAL S O. Representation theory of artin algebras[M]. Cambridge: Cambridge Univ Press, 1995.
[5] BELIGIANNIS A. On algebras of finite Cohen-Macaulay type[J]. Adv Math, 2011, 226:1973-2019.
[6] HAPPEL D. Triangulated categories in representation theory of finite dimensional algebras[M]. Gambridge: Cambridge Univ Press, 1988.
[7] ENOCHS E E, JENDA O M G. Relative homological algebra[M]. Berlin: Walter de Gruyter, 2000.
[8] HOLM H. Gorenstein homological dimensions[J]. J Pure Appl Algebra, 2004, 189:167-193.
[9] YANG Xiaoyan, LIU Zhongkui. Strongly Gorenstein projective, injective and flat modules[J]. J Algebra, 2008, 320:2659-2674.
[1] 王欣欣. 强Ω-Gorenstein内射模[J]. J4, 2013, 48(2): 23-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!