山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (8): 1-8.doi: 10.6040/j.issn.1671-9352.4.2018.184
• • 下一篇
顾沈明1,2,陆瑾璐2,吴伟志1,2,庄宇斌2
GU Shen-ming1,2, LU Jin-lu2, WU Wei-zhi1,2, ZHUANG Yu-bin2
摘要: 在实际应用中,人们常常选择比较合适的粒度层次来解决相应的问题。在经典的多尺度决策系统和粒度层次构造过程中,属性取值常由人工选择某些固定粒度层次。本文针对广义多尺度决策系统,由属性取值的尺度组合来构造粒度层次,进而研究局部最优粒度的选择问题。首先,介绍了广义多尺度决策系统的概念。然后,在协调的广义多尺度决策系统中定义了最优粒度和局部最优粒度,并给出了基于属性组合的最优粒度与局部最优粒度的选择算法。最后,在不协调的广义多尺度决策系统中引入了广义决策,定义了广义决策最优粒度和广义决策局部最优粒度,并给出了基于广义决策最优粒度与广义决策局部最优粒度选择算法。
中图分类号:
[1] ZADEH L A. Fuzzy sets and information granularity[J]. Fuzzy Sets, Fuzzy Logic and Fuzzy Systems, 1996, 6:443-448. [2] LIN T Y. Granular computing: structures, representations, and applications[C] // WANG G Y, LIU Q, YAO Y Y, et al. Rough Sets, Fuzzy Sets, Data Mining, Granular Computing. Berlin: Springer, 2003: 16-24. [3] YAO Y Y. Granular computing: basic issues and possible solutions[C] // Proc of the 5th Joint Conference on Information Science. Berlin: Springer, 2000: 186-189. [4] YAO J T, VASILAKOS A V, PEDRYCZ W. Granular computing: perspectives and challenges[J]. IEEE Transactions on Cybernetics, 2013, 43(6):1977-1989. [5] 梁吉业,钱宇华,李德玉,等. 大数据挖掘的粒计算理论与方法[J]. 中国科学(信息科学), 2015, 45(11):1355-1369. LIANG Jiye, QIAN Yuhua, LI Deyu, et al. Theory and method of granular computing for big data mining[J]. Science China(Information Sciences), 2015, 45(11):1355-1369. [6] 徐计, 王国胤, 于洪. 基于粒计算的大数据处理[J]. 计算机学报, 2015, 38(8):1497-1517. XU Ji, WANG Guoyin, YU Hong. Review of big data processing based on granular computing[J]. Chinese Journal of Computers, 2015, 38(8):1497-1517. [7] 刘清, 邱桃荣, 刘斓. 基于非标准分析的粒计算研究[J]. 计算机学报, 2015, 38(8):1618-1627. LIU Qing, QIU Taorong, LIU Lan. The research of granular computing based on nonstandard analysis[J]. Chinese Journal of Computers, 2015, 38(8):1618-1627. [8] PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Science, 1982, 11(5):341-356. [9] ZADEH L A. Fuzzy sets[J]. Information and Control, 1965, 8:338-353. [10] 张铃,张钹. 基于商空间的问题求解:粒度计算的理论基础[M]. 北京:清华大学出版社, 2014. ZHANG Ling, ZHANG Bo. Quotient space based problem solving: a theoretical foundation of granular computing[M]. Beijing: Tsinghua University Press, 2014. [11] INUIGUCHI M, HIRANO S, TSUMOTO S. Rough set theory and granular computing[M]. Berlin: Springer, 2002. [12] LIN T Y, YAO Y Y, ZADEH L A. Data mining, rough sets and granular computing[M]. New York: Physica-Verlag, 2002. [13] 苗夺谦,李德毅,姚一豫,等. 不确定性与粒计算[M]. 北京:科学出版社,2011. MIAO Duoqian, LI Deyi, YAO Yiyu, et al. Uncertainty and granular computing[M]. Beijing: Science Press, 2011. [14] PEDRYCZ W, SKOWRON A, KREINOVICH V. Handbook of granular computing[M]. New York: Wiley, 2008. [15] YANG X B, QIAN Y H, YANG J Y. Hierarchical structures on multigranulation spaces[J]. Journal of Computer Science and Technology, 2012, 27:1169-1183. [16] 李金海, 吴伟志. 形式概念分析的粒计算方法及其研究展望[J]. 山东大学学报(理学版), 2017, 52(7):1-12. LI Jinhai, WU Weizhi. Granular computing approach for formal concept analysis and its research outlooks[J]. Journal of Shandong University(Natural Science), 2017, 52(7):1-12. [17] 马媛媛, 孟慧丽, 徐久成, 等. 基于粒计算的正态粒集下的格贴近度[J]. 山东大学学报(理学版), 2014, 49(8):107-110. MA Yuanyuan, MENG Huili, XU Jiucheng, et al. Normal distribution of lattice close-degree based on granular computing[J]. Journal of Shandong University(Natural Science), 2014, 49(8):107-110. [18] QIAN Y H, LIANG J Y, YAO Y Y, et al. MGRS: a multi-granulation rough set[J]. Information Sciences, 2010, 180(6):949-970. [19] QIAN Y H, LIANG J Y, DANG C Y. Incomplete multi-granulation rough set[J]. IEEE Transactions on Systems, Man and Cybernetics, 2010, 40(2):420-431. [20] YANG X B, SONG X N, CHEN Z H, et al. On multigranulation rough sets in incomplete information system[J]. International Journal of Machine Learning and Cybernetics 2012, 3(3):223-232. [21] SUN B Z, MA W M, QIAN Y H. Multigranulation fuzzy rough set over two universes and its application to decision making[J]. Knowledge-Based Systems, 2017, 123:61-74. [22] WU W Z, LEUNG Y. Theory and applications of granular labelled partitions in multi-scale decision tables[J]. Information Sciences, 2011, 181(18):3878-3897. [23] WU W Z, LEUNG Y. Optimal scale selection for multi-scale decision tables[J]. International Journal of Approximate Reasoning, 2013, 54(8):1107-1129. [24] 吴伟志, 陈颖, 徐优红, 等. 协调的不完备多粒度标记决策系统的最优粒度选择[J]. 模式识别与人工智能, 2016, 29(2):108-115. WU Weizhi, CHEN Ying, XU Youhong, et al. Optimal granularity selections in consistent incomplete multi-granular labeled decision systems[J]. Pattern Recognition and Artificial Intelligence, 2016, 29(2):108-115. [25] GU S M, WU W Z. On knowledge acquisition in multi-scale decision systems[J]. International Journal of Machine Learning and Cybernetics, 2013, 4(5):477-486. [26] GU S M, WU W Z. Knowledge acquisition in inconsistent multi-scale decision systems[C] // YAO J T, RAMANNA S, WANG G Y, et al. Lecture Notes in Computer Science. Berlin: Springer, 2011, 6954:669-678. [27] LI F, HU B Q, WANG J. Stepwise optimal scale selection for multi-scale decision tables via attribute significance[J]. Knowledge-Based Systems, 2017,129:4-16. [28] LI F, HU B Q. A new approach of optimal scale selection to multi-scale decision tables[J]. Information Sciences, 2017, 381:193-208. |
[1] | 潘青飞1,单伟2*,吴建良3. Helmholtz方程外问题的谱随机多尺度有限元法[J]. J4, 2011, 46(6): 37-40. |
[2] | 薛岩波 杨波 陈贞翔. 小波分析在土木工程结构健康监测系统中的应用研究[J]. J4, 2009, 44(9): 28-31. |
[3] | 刘军1,张晓威2. 一种新的正交多小波函数的构造[J]. J4, 2009, 44(12): 85-90. |
[4] | 曲晓波,冯存峰,张学尧,薛 良 . 用多尺度分析方法分辨“膝”区原初宇宙线中的铁核成分[J]. J4, 2008, 43(5): 19-23 . |
|