您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (5): 95-103.doi: 10.6040/j.issn.1671-9352.2.2016.169

• • 上一篇    下一篇

基于d-型函数的具有最优周期部分汉明相关的跳频序列

宁多彪1,牛宪华2,黄平1,王常远1   

  1. 1.成都东软学院计算机科学与技术系, 四川 成都 611844;2.西华大学计算机与软件工程学院, 四川 成都 610039
  • 收稿日期:2016-08-18 出版日期:2017-05-20 发布日期:2017-05-15
  • 作者简介:宁多彪(1969— ),男,硕士,副教授,研究方向为信息安全. E-mail:ningduobiao@nsu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61401369)

New designs for frequency hopping sequences with optimal periodic partial hamming correlation over d-functions

NING Duo-biao1, NIU Xian-hua2, HUANG Ping1, WANG Chang-yuan1   

  1. 1. Department of Computer Science and Technology of Chengdu Neusoft University, Chengdu 611844, Sichuan, China;
    2. School of Computer and Software Engineering of Xihua University, Chengdu 610039, Sichuan, China
  • Received:2016-08-18 Online:2017-05-20 Published:2017-05-15

摘要: 基于d-型函数,提出了两类具有最优周期部分汉明相关的跳频序列的构造方法。研究表明,对于任意相关窗长,新构造的跳频序列都是最优的。

关键词: d-型函数, 周期部分汉明相关, 严格最优, 跳频序列

Abstract: Based on the d-function, two kinds of methods for constructing FH sequences with the optimal period partially Hamming correlation are proposed. The results show that the frequency hopping sequence are optimal for any correlation window length.

Key words: frequency hopping sequence set, periodic partial Hamming correlation, d-function, strictly optimal

中图分类号: 

  • TN914
[1] FAN Pingzhi, DARNELL M. Sequence design for communications applications[J]. Research Studies Press, 1996.
[2] GOLOMB S W, GONG G. Signal design for good correlation: For wireless communication, cryptography, and radar[M] // Signal design for good correlation for wireless communication, cryptography, and radar/. Cambridge University Press, 2005: xviii.
[3] LEMPEL A, GREENBERGER H. Families of sequences with optimal Hamming-correlation properties[J]. IEEE Transactions on Information Theory, 1974, 20(1):90-94.
[4] EUN Y C, JIN S Y, HONG Y P, et al. Frequency hopping sequences with optimal partial autocorrelation properties[J]. Information Theory IEEE Transactions on, 2004, 50(10):2438-2442.
[5] ZHOU Zhengchun, TANG Xiaohu, NIU Xinhua, et al. New classes of Frequency-hopping sequences with optimal partial correlation[J]. Information Theory IEEE Transactions on, 2012, 58(1):453-458.
[6] NIU Xinhua, PENG Daiyuan, ZHOU Zhengchun. Frequency/time hopping sequence sets with optimal partial Hamming correlation properties[J]. Science China Information Sciences, 2012, 55(10):2207-2215.
[7] CAI Han, ZHOU Zhengchun, YANG Yang, et al. A New construction of Frequency-hopping sequences with optimal partial hamming correlation[J]. Information Theory IEEE Transactions on, 2014, 60(9):5782-5790.
[8] CAI Han, YANG Yang, ZHOU Zhengchun, et al. Strictly optimal Frequency-hopping sequence sets with optimal family sizes[J]. Information Theory IEEE Transactions on, 2015, 62(2):1087-1093.
[9] BAO Jingjun, JI Lijun. Frequency hopping sequences with optimal partial hamming correlation[J]. IEEE Transactions on Information Theory, 2016, 62(6):3768-3783.
[10] FAN Cuiling, CAI Han, TANG Xiaohu. A combinatorial construction for strictly optimal Frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2016, 62(8):4769-4774.
[11] ZHOU Zhengchun, TANG Xiaohu, PENG Daiyuan, et al. New constructions for optimal sets of Frequency-hopping sequences[J]. IEEE Transactions on Information Theory, 2011, 57(6):3831-3840.
[12] GONG G, SONG H Y. Two-tuple-balance of non-binary sequences with ideal two-level autocorrelation[J]. 2006, 154(18):2590-2598.
[1] . 降低OFDM系统峰均功率比的自适应多级SLM方法[J]. J4, 2009, 44(5): 49-55.
[2] 王忠林 姚福安 李祥峰. 基于FPGA的一个超混沌系统设计与电路实现[J]. J4, 2008, 43(12): 93-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!