您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (6): 56-63.doi: 10.6040/j.issn.1671-9352.2.2016.216

• • 上一篇    下一篇

面向云平台安全监控多维数据的离群节点自识别可视化技术

吴頔1,2,王丽娜1,2,余荣威1,2*,章鑫1,2,徐来1,2   

  1. 1.武汉大学空天信息安全与可信计算教育部重点实验室, 湖北 武汉 430072;2.武汉大学计算机学院, 湖北 武汉 430072
  • 收稿日期:2016-09-02 出版日期:2017-06-20 发布日期:2017-06-21
  • 作者简介:吴頔(1993— ),女,硕士,研究方向为云计算安全. E-mail:wudi.echo@gmail.com*通迅作者:余荣威(1981— ),男,博士后,讲师,研究方向为可信计算、云计算安全. E-mail:roewe.yu@whu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(U1536204,61373169);国家科技支撑计划项目(2014BAH41B00);国家高技术研究发展(863)计划项目(2015AA016004);信息保障技术重点实验室开放基金资助项目(KJ-14-110,KJ-14-101)

Multidimensional data visualization in cloud platform security monitoring

WU Di1,2, WANG Li-na1,2, YU Rong-wei1,2*, ZHANG Xin1,2, XU Lai1,2   

  1. 1. Key Laboratory of Aerospace Informationsecurity and Trusted Computing Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China;
    2. Computer School, Wuhan University, Wuhan 430072, Hubei, China
  • Received:2016-09-02 Online:2017-06-20 Published:2017-06-21

摘要: 通过总结目前云平台安全监控的数据可视化技术,结合具体的多维监控数据探讨可视化技术的应用方法,从时间、节点号、性能指标类型三个维度出发,提出了基于维度压缩与维度切面的性能数据集可视化方法,并在此基础上,应用动态时间规划和卷积神经网络实现离群节点自识别,丰富扩展了警报系统的语义。经实验验证方法可行,能够更直观地展现有效信息,提高云管理员的决策效率。

关键词: 云安全, 云平台安全监控, 可视化技术, 离群节点自识别

Abstract: Discussed application method of visualization technology by summarized visualization technology of cloud platform security monitoring and combined with the specific multidimensional monitoring data. Started from the three dimensions of time, node number and performance index type, a visualization method of performance data set based on dimension compression and dimension slice is proposed. Based on this, node self-identification of outliers achieved by used the dynamic time planning and convolution neural network, which extends and riches semantics of the alarm system. It was proved that the method was feasible and could show the effective information more intuitively and improve the decision efficiency of the cloud administrator.

Key words: visualization, outlier node self-identification, cloud security monitoring, cloud security

中图分类号: 

  • TP391
[1] WARD J S, BARKER A. Observing the clouds: a survey and taxonomy of cloud monitoring[J]. Journal of Cloud Computing, 2014, 3(1).
[2] 杨彦波, 刘滨, 祁明月. 信息可视化研究综述[J]. 河北科技大学学报, 2014,35(116): 91-102. YANG Yanbo, LIU Bin, QI Mingyue. Review of imformation visualization[J]. Journal of Hebei University of Science and Technology, 2014, 35(116): 91-102.
[3] 曾悠. 大数据时代背景下的数据可视化概念研究[D]. 杭州:浙江大学, 2014. ZENG You. The concept study of data visualization under the background of big data[D]. Hangzhou: Zhejiang University, 2014.
[4] 任磊, 杜一, 马帅,等. 大数据可视分析综述[J]. 软件学报, 2014(9):1909-1936. REN Lei, DU Yi, MA Shuai, et al. Visual analytics towards big data[J]. Journal of Software, 2014(9):1909-1936.
[5] 张晏. OpenStack的拓扑可视化监控技术研究与实现[D]. 合肥;电子科技大学, 2014. ZHANG Yan. The research and realization of topology visualization monitering technology for openstack[D]. Hefei: University of Electronic Science and Technology of China, 2014.
[6] 周儒军. 基于Hadoop的分布式监控平台的研究与实现[D]. 广州:华南理工大学, 2015. ZHOU Rujun. The research and implementation of distributed monitoring platform based on hadoop[D]. Guangzhou: South China University of Techno- logy, 2015.
[7] 德琨. 基于OpenStack云平台的计算资源监控系统的设计与实现[D]. 北京:北京大学, 2014. DE Kun. Design and implementation of compu- ting resource monitor system based on open- stack cloud platform[D]. Beijing: Peking University, 2014.
[8] 韩敏娜, 刘渊, 陈烨. 基于集对分析的网络安全态势评估[J]. 计算机应用研究, 2012(10):3824-3827. HAN Minna, LIU Yuan, CHEN Ye. Network security situational awareness model based on set pair analysis[J]. Application Research of Computers, 2012(10):3824-3827.
[9] 张勇, 谭小彬, 崔孝林,等. 基于Markov博弈模型的网络安全态势感知方法[J]. 软件学报, 2011(3):495-508. ZHANG Yong, TAN Xiaobin, CUI Xiaolin, et al. Network security situation awareness approa- ch based on markov game model[J]. Journal of Software, 2011(3):495-508.
[10] YURCIK W. NVisionIP and VisFlowConnect-IP: Two tools for visualizing netflows for security[J]. ResearchGate,.
[11] DASGUPTA A, CHEN M, KOSARA R. Conceptualizing visual uncertainty in parallel coordinates[J]. Computer Graphics Forum, 2012, 31(3pt2):1015-1024.
[12] MUELDER C, ZHU B, CHEN W, et al. Visual analysis of cloud computing performance using behavioral lines[J]. IEEE Transactions on Visualization and Computer Graphics, 2016.
[13] 徐波, 于劲松, 李行善. 基于路径约束的动态时间规整方法研究[J]. 系统工程与电子技术, 2004(1):103-105. XU Bo, YU Jinsong, LI Xingshan. Research of dynamic time warping approach based on path constraint[J]. Systems Engineering and Electronics, 2004(1):103-105.
[14] 刘建伟, 刘媛, 罗雄麟. 深度学习研究进展[J]. 计算机应用研究, 2014,31(7):1921-1930. LIU Jianwei, LIU Yuan, LUO Xionglin. Research and development on deep learning[J]. Application Research of Computers, 2014, 31(7):1921-1930.
[15] 卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016,31(1):1-17. LU Hongtao, ZHANG Qinchuan. Applications of deep convolutional neural network in computer vision[J]. Journal of Data Acquisition and Processing, 2016, 31(1):1-17.
[1] 阮树骅,瓮俊昊,毛麾,陈雪莲. 云安全风险评估度量模型[J]. 山东大学学报(理学版), 2018, 53(3): 71-76.
[2] 杨淑棉,王连海,张淑慧,徐淑奖,刘广起. 一种IaaS模式下的实时监控取证方法[J]. 山东大学学报(理学版), 2017, 52(6): 84-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!