山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (6): 56-63.doi: 10.6040/j.issn.1671-9352.2.2016.216
吴頔1,2,王丽娜1,2,余荣威1,2*,章鑫1,2,徐来1,2
WU Di1,2, WANG Li-na1,2, YU Rong-wei1,2*, ZHANG Xin1,2, XU Lai1,2
摘要: 通过总结目前云平台安全监控的数据可视化技术,结合具体的多维监控数据探讨可视化技术的应用方法,从时间、节点号、性能指标类型三个维度出发,提出了基于维度压缩与维度切面的性能数据集可视化方法,并在此基础上,应用动态时间规划和卷积神经网络实现离群节点自识别,丰富扩展了警报系统的语义。经实验验证方法可行,能够更直观地展现有效信息,提高云管理员的决策效率。
中图分类号:
[1] WARD J S, BARKER A. Observing the clouds: a survey and taxonomy of cloud monitoring[J]. Journal of Cloud Computing, 2014, 3(1). [2] 杨彦波, 刘滨, 祁明月. 信息可视化研究综述[J]. 河北科技大学学报, 2014,35(116): 91-102. YANG Yanbo, LIU Bin, QI Mingyue. Review of imformation visualization[J]. Journal of Hebei University of Science and Technology, 2014, 35(116): 91-102. [3] 曾悠. 大数据时代背景下的数据可视化概念研究[D]. 杭州:浙江大学, 2014. ZENG You. The concept study of data visualization under the background of big data[D]. Hangzhou: Zhejiang University, 2014. [4] 任磊, 杜一, 马帅,等. 大数据可视分析综述[J]. 软件学报, 2014(9):1909-1936. REN Lei, DU Yi, MA Shuai, et al. Visual analytics towards big data[J]. Journal of Software, 2014(9):1909-1936. [5] 张晏. OpenStack的拓扑可视化监控技术研究与实现[D]. 合肥;电子科技大学, 2014. ZHANG Yan. The research and realization of topology visualization monitering technology for openstack[D]. Hefei: University of Electronic Science and Technology of China, 2014. [6] 周儒军. 基于Hadoop的分布式监控平台的研究与实现[D]. 广州:华南理工大学, 2015. ZHOU Rujun. The research and implementation of distributed monitoring platform based on hadoop[D]. Guangzhou: South China University of Techno- logy, 2015. [7] 德琨. 基于OpenStack云平台的计算资源监控系统的设计与实现[D]. 北京:北京大学, 2014. DE Kun. Design and implementation of compu- ting resource monitor system based on open- stack cloud platform[D]. Beijing: Peking University, 2014. [8] 韩敏娜, 刘渊, 陈烨. 基于集对分析的网络安全态势评估[J]. 计算机应用研究, 2012(10):3824-3827. HAN Minna, LIU Yuan, CHEN Ye. Network security situational awareness model based on set pair analysis[J]. Application Research of Computers, 2012(10):3824-3827. [9] 张勇, 谭小彬, 崔孝林,等. 基于Markov博弈模型的网络安全态势感知方法[J]. 软件学报, 2011(3):495-508. ZHANG Yong, TAN Xiaobin, CUI Xiaolin, et al. Network security situation awareness approa- ch based on markov game model[J]. Journal of Software, 2011(3):495-508. [10] YURCIK W. NVisionIP and VisFlowConnect-IP: Two tools for visualizing netflows for security[J]. ResearchGate,. [11] DASGUPTA A, CHEN M, KOSARA R. Conceptualizing visual uncertainty in parallel coordinates[J]. Computer Graphics Forum, 2012, 31(3pt2):1015-1024. [12] MUELDER C, ZHU B, CHEN W, et al. Visual analysis of cloud computing performance using behavioral lines[J]. IEEE Transactions on Visualization and Computer Graphics, 2016. [13] 徐波, 于劲松, 李行善. 基于路径约束的动态时间规整方法研究[J]. 系统工程与电子技术, 2004(1):103-105. XU Bo, YU Jinsong, LI Xingshan. Research of dynamic time warping approach based on path constraint[J]. Systems Engineering and Electronics, 2004(1):103-105. [14] 刘建伟, 刘媛, 罗雄麟. 深度学习研究进展[J]. 计算机应用研究, 2014,31(7):1921-1930. LIU Jianwei, LIU Yuan, LUO Xionglin. Research and development on deep learning[J]. Application Research of Computers, 2014, 31(7):1921-1930. [15] 卢宏涛, 张秦川. 深度卷积神经网络在计算机视觉中的应用研究综述[J]. 数据采集与处理, 2016,31(1):1-17. LU Hongtao, ZHANG Qinchuan. Applications of deep convolutional neural network in computer vision[J]. Journal of Data Acquisition and Processing, 2016, 31(1):1-17. |
[1] | 阮树骅,瓮俊昊,毛麾,陈雪莲. 云安全风险评估度量模型[J]. 山东大学学报(理学版), 2018, 53(3): 71-76. |
[2] | 杨淑棉,王连海,张淑慧,徐淑奖,刘广起. 一种IaaS模式下的实时监控取证方法[J]. 山东大学学报(理学版), 2017, 52(6): 84-91. |
|