山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (3): 77-81.doi: 10.6040/j.issn.1671-9352.0.2017.264
栾义超1,2,杨秀萍1,2*,张静静1,2,刘清2,张春秋2
LUAN Yi-chao1,2, YANG Xiu-ping1,2*, ZHANG Jing-jing1,2, LIU Qing2, ZHANG Chun-qiu2
摘要: 为研究腰椎间盘的松弛特性,考虑非线性多孔弹性性质,采用ABAQUS软件,建立了人体腰椎间盘L3/L4节段的孔隙单元有限元模型,对不同渗透率和不同应变条件下的松弛特性进行仿真。研究结果表明:非线性的渗透率增大了节段的刚度,进而增大了节段的应力;在压缩应变作用下,椎间盘的应力松弛曲线呈指数规律变化,应力随应变增大而增大;纤维环的孔隙压力和有效应力都高于髓核,纤维环背侧的孔隙压力和有效应力均大于腹侧,因此腰椎间盘突出多发生在纤维环背侧。
中图分类号:
[1] HOLLINGSWORTH N T, WAGNER D R. The stress and strain states of the posterior annulus under flexion[J]. Spine, 2012, 37(18):1134-1139. [2] KIM K, LEE S K, KIM Y H. The biomechanical effects of variation in the maximum forces exerted by trunk muscles on the joint forces and moments in the lumbar spine: a finite element analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224(10):1165-1174. [3] 聂文忠,张希安,王成焘.矢状面内人体屈伸运动的生物力学研究[J].上海交通大学学报,2009, 43(7):1027-1031. NIE Wenzhong, ZHANG Xian, WANG Chengtao. Biomechanics research on flexion and extension during sagittal plane[J]. Journal of Shanghai Jiaotong University, 2009, 43(7):1027-1031. [4] 黄菊英,李海云,吴浩.腰椎间盘突出症力学特征的仿真计算方法[J].医用生物力学,2012, 27(1):96-101. HUANG Juying, LI Haiyun, WU Hao. Simulation calculation on biomechanical properties of lumbar disc herniation[J]. Journal of Medical Biomechanics, 2012, 27(1):96-101. [5] 付立会.椎间盘组织工程的加载装置设计及其有限元建模与分析[D].天津:天津理工大学,2012. FU Lihui. The design of loading device for disc tissue engineering and finite element modeling and analysis[D]. Tianjin:Tianjin University of Technology, 2012. [6] CHAGNON A, AUBIN C E,VILLEMURE I. Biomechanical influence of disk properties on the load transfer of healthy and degenerated disks using a poroelastic finite element model[J]. ASME Journal of Biomechanical Engineering, 2010, 132(11):1-8. [7] 郭世绂.骨科临床解剖学[M].山东:山东科学技术出版社,1986:67-74. GUO Shifu. Clinical anatomy of orthopedics[M]. Shandong:Shandong Science and Technology Press, 1986:67-74. [8] 李睿,郭立新.低频振动作用下人体椎间盘多孔弹性单元的研究[J].应用力学学报,2013(4): 635-640. LI Rui, GUO Lixin. Analysis on poroelastic of human interertebral under low frequency vibration[J]. Chinese Journal of Applied Mechanics, 2013(4):635-640. [9] LEE K K, TEO E C. Poroelastic analysis of lumbar spinal stability in combined compression and anterior shear[J]. Journal of Spinal Disorders & Techniques, 2004, 17(5):429-438. [10] SCHMIDT H, SHIRAZI-ADL A, GALBUSERA F, et al. Response analysis of the lumbar spine during regular daily activities-A finite elementanalysis[J]. Journal of Biomechanics, 2010, 43(10):1849-1856. [11] 黄建松,华宏星,王以进.人体胸腰椎和椎间盘的应力松弛和蠕变性试验[J].透析与人工器官,2012, 21(1):4-8. HUANG Jiansong, HUA Hongxing, WANG Yijin, et al. Experiment on stress relaxation and creep properties of human thoraco-lumbar vertebral body and intervertebral disc[J]. Chinese Journal of Dialysis and Artificial Organs, 2012, 21(1):4-8. [12] ARGOUBI M, SHIRAZI-ADL A. Poroelastic creep response analysis of a lumbar motion segment in compression[J].Journal of Biomechanics,1996, 29(10):1331-1339. |
[1] | 杨秀萍,栾义超,张静静,刘清,张春秋. 不同加载条件下的腰椎间盘蠕变实验研究[J]. 山东大学学报(理学版), 2017, 52(5): 31-36. |
[2] | 伏虎,陈玲,门玉涛,蒋彦龙. 缺损软骨在滚压载荷下的实验与有限元分析[J]. 山东大学学报(理学版), 2017, 52(5): 37-40. |
[3] | 张静静,杨秀萍,刘清,张春秋. 基于Biot理论的腰椎间盘力学响应分析[J]. 山东大学学报(理学版), 2016, 51(11): 93-98. |
[4] | 常延贞,羊丹平 . 热耦合斯托克斯流问题的有限元分析[J]. J4, 2007, 42(8): 9-16 . |
|