您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (3): 77-81.doi: 10.6040/j.issn.1671-9352.0.2017.264

• • 上一篇    下一篇

压缩条件下腰椎间盘松弛特性的有限元仿真

栾义超1,2,杨秀萍1,2*,张静静1,2,刘清2,张春秋2   

  1. 1. 天津理工大学天津市先进机电系统设计与智能控制重点实验室, 天津 300384;2. 天津理工大学机械工程学院, 天津 300384
  • 收稿日期:2017-05-21 出版日期:2018-03-20 发布日期:2018-03-13
  • 通讯作者: 杨秀萍(1962— ),女,教授, 研究方向为生物力学. E-mail:yhp420@sina.com E-mail:qluanyichao@163.com
  • 作者简介:栾义超(1992— ),男,硕士研究生, 研究方向为机械设计及理论. E-mail:qluanyichao@163.com
  • 基金资助:
    国家自然科学重点基金资助项目(11432016);国家自然科学基金资助项目(11672208,81272046)

Finite element simulation of relaxation properties on lumbarintervertebal disc under compression

LUAN Yi-chao1,2, YANG Xiu-ping1,2*, ZHANG Jing-jing1,2, LIU Qing2, ZHANG Chun-qiu2   

  1. 1. Tianjin Key Laboratory of the Design and Intelligent Control of the Advanced Mechatronical System, Tianjin University of Technology, Tianjin 300384, China;
    2. School of Mechanical Engineering, Tianjin University of Technology, Tianjin 300384, China
  • Received:2017-05-21 Online:2018-03-20 Published:2018-03-13

摘要: 为研究腰椎间盘的松弛特性,考虑非线性多孔弹性性质,采用ABAQUS软件,建立了人体腰椎间盘L3/L4节段的孔隙单元有限元模型,对不同渗透率和不同应变条件下的松弛特性进行仿真。研究结果表明:非线性的渗透率增大了节段的刚度,进而增大了节段的应力;在压缩应变作用下,椎间盘的应力松弛曲线呈指数规律变化,应力随应变增大而增大;纤维环的孔隙压力和有效应力都高于髓核,纤维环背侧的孔隙压力和有效应力均大于腹侧,因此腰椎间盘突出多发生在纤维环背侧。

关键词: 松弛特性, 椎间盘, 多孔弹性, 有限元分析

Abstract: In order to study the relaxation properties of intervertebal disc, a poroelastic finite element model of the human spine L3/L4 segments was developed by ABAQUS with considering the nonlinear porous elastic properties, and the relaxation properties with different permeability and under different strain conditions were calculated. The results show that nonlinear permeability rises the stiffness of the segments and increases the stress, the stress relaxation curve presents the index under compression strain. And the stress increases with the rise of strain. The pore pressure and the effective stress of the annulus fibrosus(AF)are higher than those of the nucleus pulposus. The pore pressure and the effective stress of the posterior AF are greater than those of the anterior AF, so the lumbar disc herniation occurs mostly on the posterior AF.

Key words: intervertebral disc, porous elasticity, finite element analysis, relaxation property

中图分类号: 

  • R318.01
[1] HOLLINGSWORTH N T, WAGNER D R. The stress and strain states of the posterior annulus under flexion[J]. Spine, 2012, 37(18):1134-1139.
[2] KIM K, LEE S K, KIM Y H. The biomechanical effects of variation in the maximum forces exerted by trunk muscles on the joint forces and moments in the lumbar spine: a finite element analysis[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224(10):1165-1174.
[3] 聂文忠,张希安,王成焘.矢状面内人体屈伸运动的生物力学研究[J].上海交通大学学报,2009, 43(7):1027-1031. NIE Wenzhong, ZHANG Xian, WANG Chengtao. Biomechanics research on flexion and extension during sagittal plane[J]. Journal of Shanghai Jiaotong University, 2009, 43(7):1027-1031.
[4] 黄菊英,李海云,吴浩.腰椎间盘突出症力学特征的仿真计算方法[J].医用生物力学,2012, 27(1):96-101. HUANG Juying, LI Haiyun, WU Hao. Simulation calculation on biomechanical properties of lumbar disc herniation[J]. Journal of Medical Biomechanics, 2012, 27(1):96-101.
[5] 付立会.椎间盘组织工程的加载装置设计及其有限元建模与分析[D].天津:天津理工大学,2012. FU Lihui. The design of loading device for disc tissue engineering and finite element modeling and analysis[D]. Tianjin:Tianjin University of Technology, 2012.
[6] CHAGNON A, AUBIN C E,VILLEMURE I. Biomechanical influence of disk properties on the load transfer of healthy and degenerated disks using a poroelastic finite element model[J]. ASME Journal of Biomechanical Engineering, 2010, 132(11):1-8.
[7] 郭世绂.骨科临床解剖学[M].山东:山东科学技术出版社,1986:67-74. GUO Shifu. Clinical anatomy of orthopedics[M]. Shandong:Shandong Science and Technology Press, 1986:67-74.
[8] 李睿,郭立新.低频振动作用下人体椎间盘多孔弹性单元的研究[J].应用力学学报,2013(4): 635-640. LI Rui, GUO Lixin. Analysis on poroelastic of human interertebral under low frequency vibration[J]. Chinese Journal of Applied Mechanics, 2013(4):635-640.
[9] LEE K K, TEO E C. Poroelastic analysis of lumbar spinal stability in combined compression and anterior shear[J]. Journal of Spinal Disorders & Techniques, 2004, 17(5):429-438.
[10] SCHMIDT H, SHIRAZI-ADL A, GALBUSERA F, et al. Response analysis of the lumbar spine during regular daily activities-A finite elementanalysis[J]. Journal of Biomechanics, 2010, 43(10):1849-1856.
[11] 黄建松,华宏星,王以进.人体胸腰椎和椎间盘的应力松弛和蠕变性试验[J].透析与人工器官,2012, 21(1):4-8. HUANG Jiansong, HUA Hongxing, WANG Yijin, et al. Experiment on stress relaxation and creep properties of human thoraco-lumbar vertebral body and intervertebral disc[J]. Chinese Journal of Dialysis and Artificial Organs, 2012, 21(1):4-8.
[12] ARGOUBI M, SHIRAZI-ADL A. Poroelastic creep response analysis of a lumbar motion segment in compression[J].Journal of Biomechanics,1996, 29(10):1331-1339.
[1] 杨秀萍,栾义超,张静静,刘清,张春秋. 不同加载条件下的腰椎间盘蠕变实验研究[J]. 山东大学学报(理学版), 2017, 52(5): 31-36.
[2] 伏虎,陈玲,门玉涛,蒋彦龙. 缺损软骨在滚压载荷下的实验与有限元分析[J]. 山东大学学报(理学版), 2017, 52(5): 37-40.
[3] 张静静,杨秀萍,刘清,张春秋. 基于Biot理论的腰椎间盘力学响应分析[J]. 山东大学学报(理学版), 2016, 51(11): 93-98.
[4] 常延贞,羊丹平 . 热耦合斯托克斯流问题的有限元分析[J]. J4, 2007, 42(8): 9-16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!