您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (7): 15-20.doi: 10.6040/j.issn.1671-9352.0.2017.578

• • 上一篇    下一篇

污染环境下森林发展系统的最优控制

曹雪靓,雒志学   

  1. 兰州交通大学数理学院数学系, 甘肃 兰州 730070
  • 收稿日期:2017-11-14 出版日期:2018-07-20 发布日期:2018-07-03
  • 作者简介:曹雪靓(1994—),女,硕士研究生,研究方向为生物数学及最优控制理论.E-mail:1084551902@qq.com
  • 基金资助:
    国家自然科学基金资助项目(11561041);甘肃省自然科学基金资助项目(1506RJZA071)

Optimal control of forest evolution system in polluted environment

CAO Xue-jing, LUO Zhi-xue   

  1. Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Received:2017-11-14 Online:2018-07-20 Published:2018-07-03

摘要: 研究了污染环境下一类森林发展系统的最优控制问题。首先,提出所研究的模型并通过Banach不动点定理证明了解的存在唯一性,然后根据凸泛函的性质以及Mazur引理得出最优控制的唯一解。

关键词: Banach不动点定理, 森林发展系统, Mazur引理, 最优控制, 环境污染

Abstract: The optimal control problem of a forest evolution system in polluted environment was discussed. Firstly, the model was proposed and the existence and uniqueness of the solution were proved by Banach fixed point theorem. Then, the unique solution of the optimal control is obtained according to the properties of convex functional and Mazur lemma.

Key words: forest evolution system, optimal control, Banach fixed point theorem, environmental pollution, Mazur lemma

中图分类号: 

  • O175.1
[1] HALLAM T G, CLARK C E, LASSITER R R. Effects of toxicants on populations: a qualitative approach I. equilibrium environmental exposure[J]. Ecological Modelling, 1983, 18(4): 291-304.
[2] HALLAM T G, CLARK C E, JORDAN G S. Effects of toxicants on populations: a qualitative approach II. first order kinetics[J]. Journal of Mathematical Biology, 1983, 18(1): 25-37.
[3] HALLAM T G, DE LUNA J T. Effects of toxicants on populations: a qualitative approach III. environmental and food chain pathways[J]. Journal of Theoretical Biology, 1984, 109(3): 411-429.
[4] LUO Zhixue, HE Zerong. Optimal control for age-dependent population hybrid system in a polluted environment[J]. Applied Mathematics and Computation, 2014, 228(1): 68-76.
[5] LUO Zhixue, FAN Xueliang. Optimal control for an age-dependent competitive species model in a polluted environment[J]. Applied Mathematics and Computation, 2014, 228(1): 91-101.
[6] WANG Dingjiang, ZHANG Yufeng. The property of solution of a nonstationary forest evolution system[J]. Systems Science and Systems Engineering, 1993, 2(3): 281-288.
[7] 高德智,许香敏.森林发展系统中的最优控制问题[J].系统工程理论与实践, 1999(4): 90-93. GAO Dezhi, XU Xiangmin. Optimal control problems in forest evolution system[J]. Systems Engineering-Theory and Practice, 1999(4): 90-93.
[8] 马知恩.种群生态学的数学建模与研究[M].合肥:安徽教育出版社, 1996: 168-175. MA Zhien. Mathematical modeling and research on population ecology[M]. Hefei: Anhui Education Press, 1996: 168-175.
[9] HE Zerong, LIU Yan. An optimal birth control problem for a dynamical population model with size-structure[J]. Nonlinear Analysis: Real World Applications, 2012, 13(3): 1369-1378.
[10] LIU Yan, CHENG Xiaoliang, HE Zerong. On the optimal harvesting of size-structured population dynamics[J]. Applied Mathematics-A Journal of Chinese Universities, 2013, 28(2): 173-186.
[11] ANITA S. Analysis and control of age-dependent population dynamics[M]. Boston: Kluwer Academic, 2000: 67-70.
[1] 张泰年,李照兴. 一类退化抛物型方程反问题的收敛性分析[J]. 山东大学学报(理学版), 2017, 52(8): 35-42.
[2] 刘江璧,雒志学. 具有年龄结构非线性扩散系统的最优控制[J]. 山东大学学报(理学版), 2016, 51(5): 136-142.
[3] 聂天洋,史敬涛. 完全耦合正倒向随机控制系统的动态规划原理与最大值原理之间的联系[J]. 山东大学学报(理学版), 2016, 51(5): 121-129.
[4] 蔡超. 一类Kolmogorov型方程的系数反演问题[J]. 山东大学学报(理学版), 2016, 51(4): 127-134.
[5] 于永胜,宫召华,刘重阳. 微生物批式流加发酵中的最优控制[J]. J4, 2011, 46(11): 117-121.
[6] 陈丽. 超前BSDE中Z的性质及其在时滞随机控制中的应用[J]. J4, 2010, 45(4): 16-20.
[7] 郭 磊 . 确定性跳变系统的最优控制问题[J]. J4, 2007, 42(7): 82-86 .
[8] 李志涛,王光臣,木 超 . 一类随机最优控制问题的局部必要条件及在投资选择中的应用[J]. J4, 2007, 42(6): 7-11 .
[9] 陈莉, . 非方离散广义系统的奇异LQ问题及最优代价单调性[J]. J4, 2006, 41(5): 80-83 .
[10] 郭 磊,于瑞林,田发中 . 一类常规跳变系统的最优控制[J]. J4, 2006, 41(1): 35-40 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!