《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (3): 28-37.doi: 10.6040/j.issn.1671-9352.0.2018.601
摘要:
显著性检测的目标是快速找出图像视频等视觉数据中最吸引人注意的区域,作为计算机视觉领域的基本任务之一,近年来备受关注,众多的方法被提出。这些显著性检测工作可分为2个分支:视觉显著性检测方法和显著性物体检测方法。尽管这2个分支的方法有很多相同点甚至共享相同的计算模型,但是在不同分支的评价数据集上有巨大的性能差异,很少有工作对这2个分支的方法进行比较和分析。通过详细分析和阐述2个分支主流方法的计算模型、采用的评价机制以及使用的数据集,总结了多种改进视觉显著性检测方法用来检测显著性物体的方式,通过这些方式视觉显著性检测方法可应用于显著性物体检测数据集,其性能达到了领先水平甚至超过了一些主流显著性物体检测方法,从而缓解了2个分支显著性检测方法在不同分支数据集上表现的不一致的问题。
中图分类号:
1 | BRUCE N, TSOTSOS J. Saliency based on information maximization[C]// Proceedings of 18th Advances in Neural Information Processing Systems (NIPS 2005). Vancouver: MIT Press, 2005: 155-162. |
2 | BRUCE N , TSOTSOS J . Saliency, attention, and visual search: an information theoretic approach[J]. Journal of Vision, 2009, 3 (9): 5.1- 24. |
3 | FRINTROP S, WERNER T, GARCIA M. Traditional saliency reloaded: a good old model in new shape[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015). Boston: MA, 2015: 82-90. |
4 |
GAO D , VASCONCELOS N . Decision-theoretic saliency: computational principles, biological plausibility, and implications for neurophysiology and psychophysics[J]. Neural Computation, 2009, 21 (1): 239- 271.
doi: 10.1162/neco.2009.11-06-391 |
5 | HAREL J, KOCH C, PERONA P. Graph-based visual saliency[C]// Proceedings of 19th Advances in Neural Information Processing Systems (NIPS 2006). Canada: MIT Press, 2006: 545-552. |
6 | HOU X, ZHANG L. Saliency detection: a spectral residual approach[C]// Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2007). Minneapolis: MN, 2007: 1-8. |
7 |
ITTI L , KOCH C , NIEBUR E . A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 (11): 1254- 1259.
doi: 10.1109/34.730558 |
8 | JUDD T, EHINGER K, DURAND F, et al. Learning to predict where humans look[C]// Proceedings of 2009 International Conference on Computer Vision (ICCV 2009). Kyoto: IEEE, 2009: 2106-2113. |
9 | KLEIN D, FRINTROP S. Center-surround divergence of feature statistics for salient object detection[C]// Proceedings of 2011 International Conference on Computer Vision (ICCV 2011). Barcelona: IEEE, 2011: 2214-2219. |
10 | SEO H , MILANFAR P . Static and space-time visual saliency detection by self-resemblance[J]. Journal of Vision, 2009, 9 (12): 15.1- 27. |
11 | YANG J, YANG M. Top-down visual saliency via joint crf and dictionary learning[C]// Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012). Rhode Island: IEEE, 2012: 2296-2303. |
12 | ZHANG L , TONG M H , MARKS T K , et al. Sun: a Bayesian framework for saliency using natural statistics[J]. Journal of Vision, 2008, 8 (7): 32.1- 20. |
13 | ACHANTA R, ESTRADA F, WILS P, et al. Salient region detection and segmentation[C]// Proceedings of 2008 International Conference on Computer Vision Systems (ICVS 2008). Berlin: Springer, 2008: 66-75. |
14 | ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]// Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009). Miami: IEEE, 2009: 1597-1604. |
15 | CHANG K, LIU T, CHEN H, et al. Fusing generic objectness and visual saliency for salient object detection[C]// Proceedings of 2011 International Conference on Computer Vision (ICCV 2011). Barcelona: IEEE, 2011: 914-921. |
16 |
CHENG M , MITRA N J , HUANG X , et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 569- 582.
doi: 10.1109/TPAMI.2014.2345401 |
17 | CHENG M, WARRELL J, LIN W, et al. Efficient salient region detection with soft image abstraction[C]// Proceedings of 2013 International Conference on Computer Vision (ICCV 2013). Sydney: IEEE, 2013: 1529-1536. |
18 |
FELZENSZWALB P F , HUTTENLOCHER D P . Efficient graph-based image segmentation[J]. International Journal of Computer Vision, 2004, 59 (2): 167- 181.
doi: 10.1023/B:VISI.0000022288.19776.77 |
19 |
GOFERMAN S , ZELNIK-MANOR L , TAL A . Context-aware saliency detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34 (10): 1915- 1926.
doi: 10.1109/TPAMI.2011.272 |
20 | JIANG B, ZHANG L, LU H, et al. Saliency detection via absorbing markov chain[C]// Proceedings of 2013 International Conference on Computer Vision (ICCV 2013). Sydney: IEEE, 2013: 1665-1672. |
21 | JIANG H, WANG J, YUAN Z, et al. Salient object detection: a discriminative regional feature integration approach[C]// Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013). Portland: IEEE, 2013: 2083-2090. |
22 | JIANG P, LING H, YU J, et al. Salient region detection by ufo: uniqueness, focusness and objectness[C]// Proceedings of 2013 International Conference on Computer Vision (ICCV 2013). Syndney: IEEE, 2013: 1976-1983. |
23 | KIM J, HAN D, TAI Y W, et al. Salient region detection via high-dimensional color transform[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014). Columbus: IEEE, 2014: 883-890. |
24 | LI X, LU H, ZHANG L, et al. Saliency detection via dense and sparse reconstruction[C]// Proceedings of 2013 International Conference on Computer Vision (ICCV 2013). Sydney: IEEE, 2013: 2976-2983. |
25 | LIU R, CAO J, LIN Z, et al. Adaptive partial differential equation learning for visual saliency detection[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014). Columbus: IEEE, 2014: 3866-3873. |
26 |
LIU T , YUAN Z , SUN J , et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (2): 353- 367.
doi: 10.1109/TPAMI.2010.70 |
27 | LU S, MAHADEVAN V, VASCONCELOS N. Learning optimal seeds for diffusion-based salient object detection[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014). Columbus: IEEE, 2014: 2790-2797. |
28 | MAI L, NIU Y, LIU F. Saliency aggregation: a data-driven approach[C]// Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013). Portland: IEEE, 2013: 1131-1138. |
29 | MARGOLIN R, TAL A, ZELNIK-MANOR L. What makes a patch distinct?[C]// Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013). Portland: IEEE, 2013: 1139-1146. |
30 | PERAZZI F, KRAHENBUHL P, PRITCH Y, et al. Saliency filters: contrast based filtering for salient region detection[C]// Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012). Providence: IEEE, 2012: 733-740. |
31 | QIN Y, LU H, XU Y, et al. Saliency detection via cellular automata[C]// Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015). Boston: IEEE, 2015: 110-119. |
32 | REN Z, HU Y, CHIA L T, et al. Improved saliency detection based on superpixel clustering and saliency propagation[C]// Proceedings of 18th ACM international conference on Multimedia (MM2010). Firenze: ACM, 2010: 1099-1102. |
33 | SHEN X, WU Y. A unified approach to salient object detection via low rank matrix recovery[C]// Proceedings of 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012). Providence: IEEE, 2012: 853-860. |
34 | SIVA P, RUSSELL C, XIANG T, et al. Looking beyond the image: unsupervised learning for object saliency and detection[C]// Procceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013). Portland: IEEE, 2013: 3238-3245. |
35 |
XIE Y , LU H , YANG M . Bayesian saliency via low and mid level cues[J]. IEEE Transactions on Image Processing, 2013, 22 (5): 1689- 1698.
doi: 10.1109/TIP.2012.2216276 |
36 | YAN Q, XU L, SHI J, et al. Hierarchical saliency detection[C]// Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013). Portland: IEEE, 2013: 1155-1162. |
37 | YANG C, ZHANG L, LU H, et al. Saliency detection via graph-based manifold ranking[C]// Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2013). Portland: IEEE, 2013: 3166-3173. |
38 | ZHU W, LIANG S, WEI Y, et al. Saliency optimization from robust background detection[C]// Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014). Columbus: IEEE, 2014: 2814-2821. |
39 | ZOU W, KOMODAKIS N. Harf: hierarchy-associated rich features for salient object detection[C]// Proceedings of 2015 International Conference on Computer Vision (ICCV 2015). Santiago: IEEE, 2015: 406-414. |
40 | 王军, 吴泽民, 杨巍, 等. 基于稀疏恢复与优化的显著性目标检测算法[J]. 计算机科学, 2018, 45 (8): 258- 263. |
WANG Jun , WU Zemin , YANG Wei , et al. Salient object detection algorithm based on sparse recovery and optimization[J]. Computer Science, 2018, 45 (8): 258- 263. | |
41 |
孙赫赫, 尚晓清, 王冲. 基于区域对比的图像显著性检测方法[J]. 计算机工程与应用, 2018, 54 (10): 192- 195.
doi: 10.3778/j.issn.1002-8331.1612-0439 |
SUN Hehe , SHANG Xiaoqing , WANG Chong . Method of saliency detection based on region contrast[J]. Computer Eninerring and Applications, 2018, 54 (10): 192- 195.
doi: 10.3778/j.issn.1002-8331.1612-0439 |
|
42 |
刘亚宁, 吴清, 魏雪. 基于流行排序的前景背景显著性检测算法[J]. 科学技术与工程, 2018, 18 (18): 74- 81.
doi: 10.3969/j.issn.1671-1815.2018.18.011 |
LIU Yaning , WU Qing , WEI Xue . Saliency detection combined foreground with background based on manifold ranking[J]. Science Technology and Engineering, 2018, 18 (18): 74- 81.
doi: 10.3969/j.issn.1671-1815.2018.18.011 |
|
43 | 梁大川, 李静, 刘赛. 基于图和稀疏主成分分析的多目标显著性检测[J]. 计算机研究与发展, 2018, 55 (5): 1078- 1089. |
LIANG Dachuan , LI Jing , LIU Sai . Multiple object saliency detection based on graph and sparse principal component analysis[J]. Journal of Computer Research and Development, 2018, 55 (5): 1078- 1089. | |
44 | 侯向丹, 刘晓曼, 刘洪普, 等. 基于多尺度多特征的显著性区域检测[J]. 河北工业大学学报, 2017, 1 (6): 26- 31. |
HOU Xiangdan , LIU Xiaoman , LIU Hongpu , et al. Salient region detection via multi-scale and multi-feature[J]. Journal of Hebei University of Technology, 2017, 1 (6): 26- 31. | |
45 |
ERDEM E , ERDEM A . Visual saliency estimation by non-linearly integrating features using region covariance[J]. Journal of Vision, 2013, 13 (4): 11.
doi: 10.1167/13.4.11 |
46 | JIANG P, VASCONCELOS N, PENG J. Generic promotion of diffusion-based salient object detection[C]// Proceedings of 2015 International Conference on Computer Vision (ICCV 2015). Santiago: IEEE, 2015: 217-225. |
47 | ZHANG J, SCLAROFF S. Saliency detection: a boolean map approach[C]// Proceedings of 2013 International Conference on Computer Vision (ICCV 2013). Sydney: IEEE, 2013: 153-160. |
48 | ZHANG J, SCLAROFF S, LIN Z, et al. Minimum barrier salient object detection at 80 fps[C]// Proceedings of 2015 International Conference on Computer Vision (ICCV 2015). Santiago: IEEE, 2015: 1404-1412. |
49 | 蒋鹏.图像内容显著性检测的理论和方法研究[D].济南:山东大学, 2016. |
JIANG Peng. Research on theories and methodologies for saliency detection from images[D]. Jinan: Shandong Unversity, 2016. |
[1] | 吴福生,张焕国,倪明涛,王俊. 基于密码协议实现的行为安全分析模型[J]. 《山东大学学报(理学版)》, 2019, 54(3): 18-27. |
[2] | 谢小杰,梁英,董祥祥. 社交网络用户敏感属性迭代识别方法[J]. 《山东大学学报(理学版)》, 2019, 54(3): 10-17, 27. |
[3] | 常天天,陈兴蜀,罗永刚,兰晓. 面向Hive的基于安全域的数据隔离保护框架[J]. 《山东大学学报(理学版)》, 2019, 54(3): 1-9. |
[4] | 毋泽南,田立勤,王志刚. 一种结合滑动窗口和推荐信任的用户行为信任评估[J]. 《山东大学学报(理学版)》, 2019, 54(1): 53-59. |
[5] | 杜瑶瑶,潘平,令狐金花. 基于信息距离的信息系统等级保护评价方法[J]. 《山东大学学报(理学版)》, 2019, 54(1): 47-52. |
[6] | 巫朝霞,王佳琪. 一种无线单频谱安全拍卖算法[J]. 《山东大学学报(理学版)》, 2018, 53(11): 51-55. |
[7] | 焦鸿儒,秦静. 可实现全部超星量子存取结构的量子秘密共享方案[J]. 山东大学学报(理学版), 2018, 53(9): 62-68. |
[8] | 晏燕,郝晓弘. 差分隐私密度自适应网格划分发布方法[J]. 山东大学学报(理学版), 2018, 53(9): 12-22. |
[9] | 张建标,李志刚,刘国杰,王超,王玮. 面向Windows环境进程主动动态度量方法[J]. 山东大学学报(理学版), 2018, 53(7): 46-50. |
[10] | 刘政,牛芳琳,钱大兴,蔡希彪,郭颖. 基于喷泉码的防窃听编码设计[J]. 山东大学学报(理学版), 2018, 53(7): 60-64. |
[11] | 许力冬,王明强. 对10轮AES-128的中间相遇攻击[J]. 山东大学学报(理学版), 2018, 53(7): 39-45. |
[12] | 崔朝阳,孙甲琦,徐松艳,蒋鑫. 适用于集群无人机的自组网安全分簇算法[J]. 山东大学学报(理学版), 2018, 53(7): 51-59. |
[13] | 刘明明,张敏情,刘佳,高培贤. 一种基于浅层卷积神经网络的隐写分析方法[J]. 山东大学学报(理学版), 2018, 53(3): 63-70. |
[14] | 阮树骅,瓮俊昊,毛麾,陈雪莲. 云安全风险评估度量模型[J]. 山东大学学报(理学版), 2018, 53(3): 71-76. |
[15] | 康海燕,黄渝轩,陈楚翘. 基于视频分析的地理信息隐私保护方法[J]. 山东大学学报(理学版), 2018, 53(1): 19-29. |
|