山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (3): 63-70.doi: 10.6040/j.issn.1671-9352.2.2017.294
刘明明,张敏情,刘佳,高培贤
LIU Ming-ming, ZHANG Min-qing, LIU Jia, GAO Pei-xian
摘要: 为提高隐写分析的检测准确率,提出了一种基于浅层卷积神经网络的图像隐写分析方法。与深度卷积神经网络相比,浅层卷积神经网络通过减少卷积层和禁用池化层,来加快神经网络收敛速度和减少隐写特征丢失,同时采用增加卷积核数、使用批正则化以及使用单层全连接层的方式,提高隐写分析网络的泛化性能。实验结果表明,针对S-UNIWARD隐写算法,在嵌入率为0.4 bpp和0.1 bpp时,检测准确率分别能达到96%和81.7%,同时在载体库源及嵌入率失配情况下,该方法仍能保持较好的检测性能。
中图分类号:
[1] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C] // Advances in Neural Information Processing Systems 25. Curran Associates: NIPS, 2012: 1097-1105. [2] FRIDRICH J, KODOVSKY J. Rich models for steganalysis of digital images[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(3):868-882. [3] CHANG Chihchung, LIN Chihjen. LIBSVM: a library for support vector machines[J]. ACM Transactions on Intelligent Systems & Technology, 2011, 2(3):1-27. [4] KODOVSKY J, FRIDRICH J, HOLUB V. Ensemble classifiers for steganalysis of digital media[J]. IEEE Transactions on Information Forensics and Security, 2012, 7(2):432-444. [5] QIAN Yinlong, DONG Jing, WANG Wei, et al. Deep learning for steganalysis via convolutional neural networks[C] // Proceedings of SPIE Media Watermarking, Security, and Forensics. San FranciscoL: SPIE. 2015: 9409:94090J-94090J-10. [6] BAS P, FILLER T, PEVNY T. Break our steganographic system: the ins and outs of organizing BOSS[J]. Journal of the American Statistical Association, 2011, 96:488-499. [7] PEVNY T, FILLER T, BAS P. Using high-dimensional image models to perform highly undetectable steganography[C] // Proceedings of the 12th International Conference on Information Hiding. Calgary:[s.n.] , 2010: 161-177. [8] HOLUB V, FRIDRICH J. Designing steganographic distortion using directional filters[C] // Proceedings of the IEEE International Workshop on Information Forensics and Security. Tenerife:[s.n.] , 2013: 234-239. [9] HOLUB V, FRIDRICH J, DENEMARK T. Universal distortion function for steganography in an arbitrary domain[J]. Eurasip Journal on Information Security, 2014, 2014(1):1. DOI:10.1186/1687-417X-2014-1. [10] XU Guanshuo, WU Hanzhou, SHI Yunqing. Structural design of convolutional neural networks for steganalysis[J]. IEEE Signal Processing Letters, 2016, 23(5):708-712. [11] LI Bin, WANG Ming, HUANG Jiwu, et al. A new cost function for spatial image steganography[C] // IEEE International Conference on Image Processing.[S.l.] :[s.n.] , 2014: 4206-4210. [12] IOFFE S, SZEGEDY C. Batch normalization: accelerating deepnetwork training by reducing internal covariate shift[J]. OALib Journal, 2015, 3:448-456. arXiv:1502.03167. [13] PIBRE L, PASQUET J, IENCO D, et al. Deep learning is a good steganalysis tool when embedding key is reused for different images, even if there is a cover source-mismatch[J]. Electronic Imaging, 2016, 4(8):1-11. |
[1] | 肖炜茗,王贵君. 基于Bernstein多项式的SISO三层前向神经网络的设计与逼近[J]. 山东大学学报(理学版), 2018, 53(9): 55-61. |
[2] | 庞博,刘远超. 融合pointwise及深度学习方法的篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 30-35. |
[3] | 张芳芳,曹兴超. 基于字面和语义相关性匹配的智能篇章排序[J]. 山东大学学报(理学版), 2018, 53(3): 46-53. |
[4] | 秦静,林鸿飞,徐博. 基于示例语义的音乐检索模型[J]. 山东大学学报(理学版), 2017, 52(6): 40-48. |
[5] | 王长弘,王林山. 基于忆阻器的S-分布时滞随机神经网络的均方指数稳定性[J]. 山东大学学报(理学版), 2016, 51(5): 130-135. |
[6] | 甄艳, 王林山. S-分布时滞随机广义细胞神经网络的均方指数稳定性分析[J]. 山东大学学报(理学版), 2014, 49(12): 60-65. |
[7] | 刘铭, 昝红英, 原慧斌. 基于SVM与RNN的文本情感关键句判定与抽取[J]. 山东大学学报(理学版), 2014, 49(11): 68-73. |
[8] | 杨阳, 刘龙飞, 魏现辉, 林鸿飞. 基于词向量的情感新词发现方法[J]. 山东大学学报(理学版), 2014, 49(11): 51-58. |
[9] | 堵锡华,史小琴,冯长君,李亮. 基于野韭菜挥发性成分的色谱保留指数神经网络预测[J]. 山东大学学报(理学版), 2014, 49(1): 50-53. |
[10] | 马奎森,王林山*. S-分布时滞随机BAM神经网络的指数同步[J]. 山东大学学报(理学版), 2014, 49(03): 73-78. |
[11] | 常青, 周立群*. 一类具时滞细胞神经网络的全局一致渐近稳定性[J]. J4, 2012, 47(8): 42-49. |
[12] | 冯新营1,2,计华1,2,张化祥1,2. 基于聚类优化的RBF神经网络多标记学习算法[J]. J4, 2012, 47(5): 63-67. |
[13] | 段晨霞1,孙刚2,王贵君1*. 正则模糊神经网络对保极大值函数类的泛逼近性[J]. J4, 2012, 47(3): 81-86. |
[14] | 张伟伟1,王林山2*. S-分布时滞随机区间细胞神经网络的全局指数鲁棒稳定性[J]. J4, 2012, 47(3): 87-92. |
[15] | 黄祖达,彭乐群,徐敏. 论变时滞高阶细胞神经网络模型的反周期解[J]. J4, 2012, 47(10): 121-126. |
|