《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (3): 46-55.doi: 10.6040/j.issn.1671-9352.1.2018.159
Jie WU(),Xiao-fei ZHU*(),Yi-hao ZHANG,Jian-wu LONG,Xian-ying HUANG,Wu YANG
摘要:
微博言论往往带有强烈的情感色彩,对微博言论的情感分析是获取用户观点态度的重要方法。许多学者都是将研究的重点集中在句子词性、情感符号以及情感语料库等方面,然而用户自身的情感倾向性并没有受到足够的重视,因此,提出了一种新的微博情感分类方法,其通过建模用户自身的情感标志得分来帮助识别语句的情感特征,具体地讲,将带有情感信息的微博语句词向量序列输入到长短期记忆网络(LSTM),并将LSTM输出的特征表示与用户情感得分进行结合作为全连接层的输入,并通过Softmax层实现了对微博文本的情感极性分类。实验表明,提出的方法UA-LSTM在情感分类任务上的表现超过的所有基准方法,并且比最优的基准方法MF-CNN在F1值上提升了3.4%,达到0.91。
中图分类号:
1 | PANG B , LEE L . Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval, 2008, 2 (1/2): 1- 135. |
2 | 丁兆云, 贾焰, 周斌. 微博数据挖掘研究综述[J]. 计算机研究与发展, 2014, 51 (4): 691- 706. |
DING Zhaoyun , JIA Yan , ZHOU Bin . Survey of data mining for microblogs[J]. Journal of Computer Research and Development, 2014, 51 (4): 691- 706. | |
3 |
TABOADA M , BROOTE J , TOFILOSTI M , et al. Lexicon-based methods for sentiment analysis[J]. Computational Linguistics, 2011, 37 (2): 267- 307.
doi: 10.1162/COLI_a_00049 |
4 | WIEBE J , WILSON T , CARDIE C . Annotating expressions of opinions and emtions in language[J]. Language Resources and Evaluation, 2005, 39 (2): 165- 210. |
5 |
BOIY E , MOENS M F . A machine learning approach to sentiment analysis in multilingual Web texts[J]. Information Retrieval, 2009, 12 (5): 526- 558.
doi: 10.1007/s10791-008-9070-z |
6 | 陈铁明, 缪茹一, 王小号. 融合显性和隐性特征的中文微博情感分析[J]. 中文信息学报, 2016, 30 (4): 184- 192. |
CHEN Tieming , MIAO Ruyi , WANG Xiaohao . Chinese micro-blog sentiment analysis using both explicit and implicit text features[J]. Journal of Chinese Information Processing, 2016, 30 (4): 184- 192. | |
7 | 万圣贤, 兰艳艳, 郭嘉丰, 等. 基于弱监督预训练深度模型的微博情感分析[J]. 中文信息学报, 2017, 31 (3): 191- 197. |
WAN Shengxian , LAN Yanyan , GUO Jiafeng , et al. Pretrain deep models by distant supervision for weibo sentiment analysis[J]. Journal of Chinese Information Processing, 2017, 31 (3): 191- 197. | |
8 | KIM Y . Convolutional neural networks for sentence classification[J]. Eprint Arxiv, 2014, 2014: 1746- 1751. |
9 | 王文凯,王黎明,柴玉梅.基于卷积神经网络和Tree-LSTM的微博情感分析[J/OL].计算机应用研究, 2019, 36(5).(2018-03-09).http://www.arocmag.com/article/02-2019-05-007.html. |
WANG Wenkan, WANG Liming, CHAI Yumei.Sentiment analysis of micro-blog based on CNN and Tree-LSTM[J/OL]. Application Research of Computers, 2019, 36(5).(2018-03-09). http://www.arocmag.com/article/02-2019-05-007.html. | |
10 | 蔡林森,彭超,陈思远,等.基于多样化特征卷积神经网络的情感分析[J/OL].计算机工程, [2018-03-14].https://doi.org/10.19678/j.issn.1000-3428.0050338. |
CAI Linsen, PENG Chao, CHEN Siyuan, et al. Sentiment analysis based on multiple features vonvolutional neural networks[J/OL]. Computer Engineering, [2018-03-14]. https://doi.org/10.19678/j.issn.1000-3428.0050338. | |
11 | 赵妍妍, 秦兵, 刘挺. 文本情感分析[J]. 软件学报, 2010, 21 (8): 1834- 1848. |
ZHAO Yanyan , QIN Bing , LIU Ting . Text sentiment analysis[J]. Journal of Software, 2010, 21 (8): 1834- 1848. | |
12 | 何炎祥, 孙松涛, 牛菲菲, 等. 用于微博情感分析的一种情感语义增强的深度学习模型[J]. 计算机学报, 2017, 40 (4): 773- 790. |
HE Yanxiang , SUN Hongtao , NIU Feifei , et al. A deep learning model enhanced with emotion semantics for Microblog sentiment analysis[J]. Chinese Jouranal of Computers, 2017, 40 (4): 773- 790. | |
13 | 董振东.知网情感分析用词语集[CP/OL]. (2012-04-25).http://www.keenage.com. |
DONG Zhendong.Word sets for HowNet sentiment analysis[CP/OL]. (2012-04-25).http://www.keenage.com. | |
14 | 赵妍妍, 秦兵, 石秋慧, 等. 大规模情感词典的构建及其在情感分类中的应用[J]. 中文信息学报, 2017, 31 (2): 187- 193. |
ZHAO Yanyan , QIN Bing , SHI Qiuhui , et al. Large-scale sentiment lexicon collection and its application in sentiment classification[J]. Journal of Chinese Information Processing, 2017, 31 (2): 187- 193. | |
15 |
于海燕, 陆慧娟, 郑文斌. 情感分类中基于词性嵌入的特征权重计算方法[J]. 计算机工程与应用, 2017, 53 (22): 121- 125.
doi: 10.3778/j.issn.1002-8331.1605-0342 |
YU Haiyan , LU Huijuan , ZHENG Wenbin . Feature weighting method based on part of speech embedding for sentiment classification[J]. Computer Engineering and Applications, 2017, 53 (22): 121- 125.
doi: 10.3778/j.issn.1002-8331.1605-0342 |
|
16 |
王素格, 杨安娜, 李德玉. 基于汉语情感词表的句子情感倾向分类研究[J]. 计算机工程与应用, 2009, 45 (24): 153- 155.
doi: 10.3778/j.issn.1002-8331.2009.24.045 |
WANG Suge , YANG Anna , LI Deyu . Research on sentence sentiment classification based on Chinese sentiment word table[J]. Computer Engineering and Applications, 2009, 45 (24): 153- 155.
doi: 10.3778/j.issn.1002-8331.2009.24.045 |
|
17 |
张书卿, 周文, 欧阳纯萍, 等. 基于主体句和句法依赖的微博情感倾向性分析[J]. 南华大学学报(自然科学版), 2015, 29 (1): 109- 114.
doi: 10.3969/j.issn.1673-0062.2015.01.023 |
ZHANG Shuqing , ZHOU Wen , OUYANG Chunping , et al. Sentiment analysis of Micro Blog based on the main sentence and syntactic dependencies[J]. Journal of University of South China(Science and Technology), 2015, 29 (1): 109- 114.
doi: 10.3969/j.issn.1673-0062.2015.01.023 |
|
18 |
JIANG F , LIU Y , LUAN H , et al. Microblog sentiment analysis with emoticon space model[J]. Journal of Computer Science and Technology, 2015, 30 (5): 1120- 1129.
doi: 10.1007/s11390-015-1587-1 |
19 | PANG B, LEE L, VAITHYANATHAN S. Thumbs up?: sentiment classification using machine learing techniques[C]//Proceedings of the ACL-02 Conference on Empirical Methods in Natural Ianguage Processing: Volume 10.[S.l]: Association for Computational Linguistics, 2002: 79-86. |
20 |
张志琳, 宗成庆. 基于多样化特征的中文微博情感分类方法研究[J]. 中文信息学报, 2015, 29 (4): 134- 143.
doi: 10.3969/j.issn.1003-0077.2015.04.018 |
ZHANG Zhilin , ZONG Chengqing . Sentiment analysis of Chinese Micro Blog based on rich-features[J]. Journ al of Chinese Information Processing, 2015, 29 (4): 134- 143.
doi: 10.3969/j.issn.1003-0077.2015.04.018 |
|
21 |
陈钊, 徐睿峰, 桂林, 等. 结合卷积神经网络和词语情感序列特征的中文情感分析[J]. 中文信息学报, 2015, 29 (6): 172- 178.
doi: 10.3969/j.issn.1003-0077.2015.06.023 |
CHEN Zhao , XU Ruifeng , GUI Lin , et al. Combining convolutional neural networks and word sentiment sequence features for Chinese text sentiment analysis[J]. Journal of Chinese Information Processing, 2015, 29 (6): 172- 178.
doi: 10.3969/j.issn.1003-0077.2015.06.023 |
|
22 | 杨艳, 徐冰, 杨沐昀, 等. 一种基于联合深度学习模型的情感分类方法[J]. 山东大学学报(理学版), 2017, 52 (9): 19- 25. |
YANG Yan , XU Bing , YANG Muyun , et al. An emotional classification method based on joint deep learning model[J]. Journal of Shandong University(Natural Science), 2017, 52 (9): 19- 25. | |
23 |
陈国兰. 基于情感词典与语义规则的微博情感分析[J]. 情报探索, 2016, (2): 1- 6.
doi: 10.3969/j.issn.1005-8095.2016.02.001 |
CHEN Guolan . Microblog sentiment analysis basing on emotion dictionary and semantic rule[J]. Information Research, 2016, (2): 1- 6.
doi: 10.3969/j.issn.1005-8095.2016.02.001 |
[1] | 陈鑫,薛云,卢昕,李万理,赵洪雅,胡晓晖. 基于保序子矩阵和频繁序列模式挖掘的文本情感特征提取方法[J]. 山东大学学报(理学版), 2018, 53(3): 36-45. |
[2] | 余传明,冯博琳,田鑫,安璐. 基于深度表示学习的多语言文本情感分析[J]. 山东大学学报(理学版), 2018, 53(3): 13-23. |
[3] | 何炎祥, 刘健博, 孙松涛, 文卫东. 基于层叠条件随机场的微博商品评论情感分类[J]. 山东大学学报(理学版), 2015, 50(11): 67-73. |
[4] | 朱珠, 李寿山, 戴敏, 周国栋. 结合主动学习和自动标注的评价对象抽取方法[J]. 山东大学学报(理学版), 2015, 50(07): 38-44. |
[5] | 周文, 张书卿, 欧阳纯萍, 刘志明, 阳小华. 基于情感依存元组的新闻文本主题情感分析[J]. 山东大学学报(理学版), 2014, 49(12): 1-6. |
[6] | 夏梦南, 杜永萍, 左本欣. 基于依存分析与特征组合的微博情感分析[J]. 山东大学学报(理学版), 2014, 49(11): 22-30. |
[7] | 孙松涛, 何炎祥, 蔡瑞, 李飞, 贺飞艳. 面向微博情感评测任务的多方法对比研究[J]. 山东大学学报(理学版), 2014, 49(11): 43-50. |
[8] | 朱玺, 董喜双, 关毅, 刘志广. 基于半监督学习的微博情感倾向性分析[J]. 山东大学学报(理学版), 2014, 49(11): 37-42. |
[9] | 杨佳能, 阳爱民, 周咏梅. 基于语义分析的中文微博情感分类方法[J]. 山东大学学报(理学版), 2014, 49(11): 14-21. |
[10] | 张成功1,2,刘培玉1,2*,朱振方1,2,方明1,2. 一种基于极性词典的情感分析方法[J]. J4, 2012, 47(3): 47-50. |
|