您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2019, Vol. 54 ›› Issue (9): 43-53.doi: 10.6040/j.issn.1671-9352.0.2019.038

• • 上一篇    下一篇

区间毕达哥拉斯模糊集的信息度量及其应用

孙倩倩,李小南*   

  1. 西安电子科技大学数学与统计学院, 陕西 西安 710071
  • 出版日期:2019-09-20 发布日期:2019-07-30
  • 作者简介:孙倩倩(1993— ),女,硕士研究生,研究方向为模糊集、粗糙集及三支决策. E-mail:18865735253@163.com*通信作者简介:李小南(1981— ),男,博士,副教授,研究方向为拟阵推广理论、粗糙集及三支决策. E-mail:lxn2007@163.com
  • 基金资助:
    国家自然科学基金资助项目(61772019)

Information measures of interval valued Pythagorean fuzzy sets and their applications

SUN Qian-qian, LI Xiao-nan*   

  1. School of Mathematics and Statistics, Xidian University, Xian 710071, Shaanxi, China
  • Online:2019-09-20 Published:2019-07-30

摘要: 熵、距离和相似度是模糊集及其推广理论中重要的信息度量工具。基于区间毕达哥拉斯模糊集的信息度量研究大多涉及区间毕达哥拉斯模糊数的距离公式,很少涉及模糊性和相似性的度量方法。针对这种情况,首先提出区间毕达哥拉斯模糊集的熵、距离和相似度的公理化定义。然后研究熵、距离和相似度之间的关系。最后将提出区间毕达哥拉斯模糊集的熵和相似度应用到模式识别领域,对比分析表明所提出的度量方法具有灵活性和有效性的特点。

关键词: 区间毕达哥拉斯模糊集, 熵, 距离, 相似度, 模式识别

Abstract: Entropy, distance and similarity are important information measurement tools in fuzzy sets and their generalization theories. The information metrics research based on interval valued Pythagorean fuzzy sets mostly involves the distance formula of interval valued Pythagorean fuzzy numbers, and rarely involves metrics of ambiguity and similarity. In view of this situation, firstly, the axiomatization definition of entropy, distance and similarity of interval valued Pythagorean fuzzy sets is first proposed. Then study the relationship between entropy, distance and similarity. Finally, the entropy and similarity of the interval valued Pythagorean fuzzy set are applied to the field of pattern recognition. Comparative analysis shows the flexibility and effectiveness of the proposed measures.

Key words: interval valued Pythagorean fuzzy set, entropy, distance, similarity, pattern recognition

中图分类号: 

  • O159
[1] ZADEH L A. Fuzzy sets[J]. Information Control, 1965, 8(3):338-365.
[2] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1896, 20(1):87-96.
[3] ATANASSOV K T. Intuitionistic fuzzy sets: theory and applications[M]. Heidelberg: Physica-Verlag, 1999.
[4] XU Zeshui. Intuitionistic fuzzy aggregation operators[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(6):1179-1187.
[5] 徐泽水. 直觉模糊信息集成理论及应用[M]. 北京: 科学出版社,2008. XU Zeshui. Intuitionistic fuzzy information aggregation[M]. Beijing: Science Press, 2008.
[6] ATANASSOV K T. On intuitionistic fuzzy sets theory[M]. Berlin: Springer, 2012.
[7] 雷英杰. 直觉模糊集理论及应用[M]. 北京: 科学出版社,2014. LEI Yingjie. Intuitionistic fuzzy set theory and its application[M]. Beijing: Science Press, 2014.
[8] LI Xiaonan, YI Huangjian. Intuitionistic fuzzy matroids[J]. Journal of Intelligent & Fuzzy Systems, 2017, 33(6):3653-3663.
[9] JAMKHANEH E B, GARG H. Some new operations over the generalized intuitionistic fuzzy sets and their application to decision-making process[J]. Granular Computing, 2018, 3(2):111-122.
[10] YAGER R R. Pythagorean fuzzy subsets[C] // 2013 Joint IFSA World Congress and NAFIPS Annual Meeting(IFSA/NAFIPS). Edmonton, Canada: IEEE, 2013: 57-61.
[11] YAGER R R. Pythagorean membership grades in multicriteria decision making[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(5):958-965.
[12] 刘卫锋,何霞. 毕达哥拉斯犹豫模糊集[J]. 模糊系统与数学,2016,30(4):108-113. LIU Weifeng, HE Xia. Pythagorean hesitant fuzzy set[J]. Fuzzy System and Mathematics, 2016, 30(4):108-113.
[13] 彭新东,杨勇,宋娟萍,等. 毕达哥拉斯模糊软集及其应用[J]. 计算机工程,2015,41(7):225-229. PENG Xindong, YANG Yong, SONG Juanping, et al. Pythagorean fuzzy soft set and its application[J]. Computer Engineering, 2015, 41(7):225-229.
[14] ZHANG Xiaolu, XU Zeshui. Extension of TOPSIS to multiple critiple criteria decision making with pythagorean fuzzy sets[J]. International Journal of Intelligent Systems, 2014, 29(12):1061-1078.
[15] 何霞,杜迎雪,刘卫锋. 毕达哥拉斯模糊幂平均算子[J]. 模糊系统与数学,2016,30(6):117-126. HE Xia, DU Yingxue, LIU Weifeng. Pythagorean fuzzy power average operators[J]. Fuzzy System and Mathematics, 2016, 30(6):117-126.
[16] ZHANG Xiaolu. A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision[J]. International Journal of Intelligent Systems, 2016, 31(6):593-611.
[17] WEI Guiwu. Pythagorean fuzzy interaction aggregation operators and their applications to multiple attribute decision making[J]. Journal of Intelligent & Fuzzy Systems, 2017, 33(4):2119-2132.
[18] 刘卫锋,杜迎雪,常娟. 毕达哥拉斯模糊交叉影响集成算子及其决策应用[J]. 控制与决策,2017,32(6):1034-1040. LIU Weifeng, DU Yingxue, CHANG Juan. Pythagorean fuzzy interaction aggregation operators and applications in decision making[J]. Control and Decision, 2017, 32(6):1034-1040.
[19] WEI Guiwu, LU Mao. Pythagorean fuzzy power aggregation operators in multiple attribute decision making[J]. International Journal of Intelligent Systems, 2018, 33(1):169-186.
[20] 丁恒,李延来. 基于毕达哥拉斯模糊幂加权平均算子的多属性群决策方法[J]. 计算机工程与应用,2018,54(5):1-6. DING Heng, LI Yanlai. Multiple attribute group decision making method based on Pythagorean fuzzy power weighted average operator[J]. Computer Engineering and Applications, 2018, 54(5):1-6.
[21] PENG Xindong, YANG Yong. Fundamental properties of interval-valued Pythagorean fuzzy aggregation operator[J]. International Journal of Intelligent Systems, 2016, 31(5):444-487.
[22] WEI Guiwu, LU Mao. Pythagorean fuzzy maclaurin symmetric mean operators in multiple attribute decision making[J]. International Journal of Intelligent Systems, 2016, 33(5):1043-1070.
[23] DU Yuqin, HOU Fujun, ZAFAR W, et al. A novel method for multiattribute decision making with interval-valued Pythagorean fuzzy linguistic information[J]. International Journal of Intelligent Systems, 2017, 32(10):1085-1112.
[24] ZADEH A. Fuzzy sets and systems[C] // Proceedings of the Symposium on Systems Theory. New York: Polytechnic Institute of Brooklyn, 1965: 29-37.
[25] ZHANG Qiansheng, JIANG Shengyi, JIA Baoguo, et al. Some information measures for interval-valued intuitionistic fuzzy sets[J]. International Journal of Information Sciences, 2010, 180(24):5130-5145.
[26] PENG Xindong, YUAN Huiyong, YANG Yong. Pythagorean fuzzy information measures and their applications[J]. International Journal of Intelligent Systems, 2017, 32(10):991-1029.
[27] RAHMAN K, ABDULLAH S, ALI A. Some induced aggregation operators based on interval-valued Pythagorean fuzzy numbers[J]. Granular Computing, 2019, 4(1):53-62.
[28] LIU Yi, QIN Ya, HAN Yun. Multiple criteria decision making with probabilities in interval-valued Pythagorean fuzzy setting[J]. International Journal of Fuzzy System, 2018, 20(2):558-571.
[29] WEI Guiwu, WEI Yu. Similarity measures of Pythagorean fuzzy sets based on the cosine function and their applications[J]. International Journal of Intelligent Systems, 2018, 33(2):1-18.
[30] GARG H. New exponential operational laws and their aggregation operators for interval-valued Pythagorean fuzzy multicriteria decision-making[J]. International Journal of Intelligent Systems, 2018, 33(3):653-683.
[1] 刘振鹏,王文胜,贺玉鹏,孙静薇,张彬. 一种SDN控制节点故障恢复的部署策略[J]. 《山东大学学报(理学版)》, 2019, 54(5): 21-27.
[2] 周安民,户磊,刘露平,贾鹏,刘亮. 基于熵时间序列的恶意Office文档检测技术[J]. 《山东大学学报(理学版)》, 2019, 54(5): 1-7.
[3] 杜瑶瑶,潘平,令狐金花. 基于信息距离的信息系统等级保护评价方法[J]. 《山东大学学报(理学版)》, 2019, 54(1): 47-52.
[4] 龚双双,陈钰枫,徐金安,张玉洁. 基于网络文本的汉语多词表达抽取方法[J]. 山东大学学报(理学版), 2018, 53(9): 40-48.
[5] 徐伟呈,李欣鹏. 单边不完全信息重复博弈中的Cav(u)定理的推广[J]. 山东大学学报(理学版), 2018, 53(4): 42-45.
[6] 李小娟,高强. 次线性期望框架下乘积空间的正则性[J]. 山东大学学报(理学版), 2018, 53(4): 66-75.
[7] 李国成,王继霞. 交叉熵蝙蝠算法求解期权定价模型参数估计问题[J]. 《山东大学学报(理学版)》, 2018, 53(12): 80-89.
[8] 黄栋,徐博,许侃,林鸿飞,杨志豪. 基于词向量和EMD距离的短文本聚类[J]. 山东大学学报(理学版), 2017, 52(7): 66-72.
[9] 张聪,裴家欢,黄锴宇,黄德根,殷章志. 基于语义图优化算法的中文微博观点摘要研究[J]. 山东大学学报(理学版), 2017, 52(7): 59-65.
[10] 朱晓颖,逄世友. 控制数给定的树的最大离心距离和[J]. 山东大学学报(理学版), 2017, 52(2): 30-36.
[11] 黄淑芹,徐勇,王平水. 基于概率矩阵分解的用户相似度计算方法及推荐应用[J]. 山东大学学报(理学版), 2017, 52(11): 37-43.
[12] 岳猛,吴志军,姜军. 云计算中基于可用带宽欧氏距离的LDoS攻击检测方法[J]. 山东大学学报(理学版), 2016, 51(9): 92-100.
[13] 翟鹏,李登道. 基于高斯隶属度的包容性指标模糊聚类算法[J]. 山东大学学报(理学版), 2016, 51(5): 102-105.
[14] 赵斌,何泾沙,张伊璇. 基于信息熵隶属度的决策属性权重确定方法[J]. 山东大学学报(理学版), 2016, 51(3): 86-90.
[15] 李钊,孙占全,李晓,李诚. 基于信息损失量的特征选择方法研究及应用[J]. 山东大学学报(理学版), 2016, 51(11): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨莹,江龙*,索新丽. 容度空间上保费泛函的Choquet积分表示及相关性质[J]. J4, 2013, 48(1): 78 -82 .
[2] 李永明1, 丁立旺2. PA误差下半参数回归模型估计的r-阶矩相合[J]. J4, 2013, 48(1): 83 -88 .
[3] 董丽红1,2,郭双建1. Yetter-Drinfeld模范畴上的弱Hopf模基本定理[J]. J4, 2013, 48(2): 20 -22 .
[4] 李娇. Caputo分数阶微分方程初值问题解的存在性与惟一性[J]. J4, 2013, 48(4): 60 -64 .
[5] 谢涛,左可正. 关于两个幂等算子组合的Drazin逆的若干探讨[J]. J4, 2013, 48(4): 95 -103 .
[6] 王 怡,刘爱莲 . 时标下的蛛网模型[J]. J4, 2007, 42(7): 41 -44 .
[7] 程李晴1,2, 石巧连2. 一种新的混合共轭梯度算法[J]. J4, 2010, 45(6): 81 -85 .
[8] 史艳华1,石东洋2*. 伪双曲方程类Wilson非协调元逼近[J]. J4, 2013, 48(4): 77 -84 .
[9] 任会学,杨延钊,林吉茂,齐银山,张业清 . 5-溴-3-仲丁基-6-甲基脲嘧啶的合成及表征[J]. J4, 2007, 42(7): 9 -12 .
[10] 赵同欣1,刘林德1*,张莉1,潘成臣2,贾兴军1. 紫藤传粉昆虫与花粉多型性研究[J]. 山东大学学报(理学版), 2014, 49(03): 1 -5 .