山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (4): 66-75.doi: 10.6040/j.issn.1671-9352.0.2017.340
李小娟1,高强2*
LI Xiao-juan1, GAO Qiang2*
摘要: 证明了一列正则次线性期望空间的乘积空间是正则的。进一步,在样本空间都是完备可分距离空间的假设下,证明了乘积空间的完备化空间仍然是正则的。
中图分类号:
[1] 严加安. 测度论讲义[M]. 北京:科学出版社,2004. YAN Jiaan. Lecture notes in measure theory[M]. Beijing: Science Press: 2004. [2] PENG Shige. Filtration consistent nonlinear expectations and evaluations of contingent claims[J]. Acta Mathematicae Applicatae Sinica, English Series, 2004, 20(2):1-24. [3] PENG Shige. Nonlinear expectations and nonlinear Markov chains[J]. Chinese Annals of Mathematics: Series B, 2005, 26(2):159-184. [4] PENG Shige. G-expectation, G-Brownian motion and related stochastic calculus of Itô type[J]. Stochastic Analysis and Applications, 2006, 2(4):541-567. [5] PENG Shige. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation[J]. Stochastic Processes and Their Applications, 2008, 118(12):2223-2253. [6] PENG Shige. A new central limit theorem under sublinear expectations[J]. Mathematics, 2008, 53(8):1989-1994. [7] PENG Shige. Nolinear expectations and stochastic calculus under uncertainty[EB/OL]. [2017-02-06]. http://arxiv.org/abs/1002.4546v1 [8] DENIS L, HU Mingshang, PENG Shige. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths[J]. Potential Analysis, 2011, 34(2):139-161. [9] HU Mingshang, PENG Shige. On representation theorem of G-expectations and paths of G-Brownian motion[J]. Acta Mathematicae Applicatae Sinica English, 2009, 25(3):539-546. |
[1] | 杜广伟. 具有次临界增长的椭圆障碍问题解的正则性[J]. 山东大学学报(理学版), 2018, 53(6): 57-63. |
[2] | 刘智. 次线性期望下的大数定律及应用[J]. J4, 2012, 47(7): 76-80. |
[3] | 宋丽1,2. 容度的BorelCantelli引理[J]. J4, 2012, 47(6): 117-120. |
[4] | 宋丽1,2. 次线性期望的Jensen不等式[J]. J4, 2011, 46(3): 109-111. |
[5] | 代丽美. Hessian方程黏性解的正则性[J]. J4, 2010, 45(9): 62-64. |
|