您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (4): 76-84.doi: 10.6040/j.issn.1671-9352.0.2017.580

• • 上一篇    下一篇

一类空间退化的捕食-食饵模型的全局分歧结构

董亚莹   

  1. 西安工程大学理学院, 陕西 西安 710048
  • 收稿日期:2017-11-14 出版日期:2018-04-20 发布日期:2018-04-13
  • 作者简介:董亚莹(1987— ), 女, 博士, 讲师, 研究方向为偏微分方程. E-mail:sxsbjsying@163.com
  • 基金资助:
    中国博士后科学基金资助项目(2016M602627);西安工程大学博士启动资金(BS1618)

Global bifurcation structure in a predator-prey model with a spatial degeneracy

DONG Ya-ying   

  1. School of Science, Xian Polytechnic University, Xian 710048, Shaanxi, China
  • Received:2017-11-14 Online:2018-04-20 Published:2018-04-13

摘要: 研究了一类空间退化异质环境中带有Holling II型反应函数的捕食-食饵模型。当食饵的生长率较弱时, 通过比较原理给出了任意正稳态解的先验估计, 再利用全局分歧理论证明了正稳态解集合形成一条有界的全局分歧曲线;当食饵的生长率较强时, 通过反证法得到了任意正稳态解的先验估计, 并利用全局分歧理论证明了正稳态解集合形成一条无界的全局分歧曲线。

关键词: 先验估计, 全局分歧, Holling II, 空间退化

Abstract: A predator-prey model with Holling type II response function in a spatially degenerate heterogeneous environment is studied. When the prey growth rate is weak, a priori estimates of any positive steady-state solution is first obtained by the comparison principle, and then we show that the set of positive steady-state solutions forms a bounded global bifurcation curve by the global bifurcation theory. When the prey growth rate is strong, a priori estimates of any positive steady-state solution is first obtained by using reduction to absurdity, and then we show that the set of positive steady-state solutions forms an unbounded global bifurcation curve by the global bifurcation theory.

Key words: Holling II, global bifurcation, a priori estimates, spatial degeneracy

中图分类号: 

  • O175.26
[1] DONG Yaying, LI Shanbing, LI Yanling. Multiplicity and uniqueness of positive solutions for a predator-prey model with C-M functional response[J]. Acta Applicandae Mathematicae, 2015, 139:187-206.
[2] DONG Yaying, ZHANG Shunli, LI Shanbing, et al. Qualitative analysis of a predator-prey model with Crowley-Martin functional response[J]. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25(9):1550110(19 pages).
[3] DU Yihong, LOU Yuan. Some uniqueness and exact multiplicity results for a predator-prey model[J]. Transactions of the American Mathematical Society, 1997, 349(6):2443-2475.
[4] LI Lige. Coexistence theorems of steady-states for predator-prey interacting systems[J]. Transactions of the American Mathematical Society, 1988, 305(1):143-166.
[5] LI Shanbing, WU Jianhua. Qualitative analysis of a predator-prey model with predator saturation and competition[J]. Acta Applicandae Mathematicae, 2016, 141:165-185.
[6] HUFFAKER C B. Exerimental studies on predation: despersion factors and predator-prey oscilasions[J]. Hilgardia, 1958, 27:343-383.
[7] BLAT J, BROWN K J. Global bifurcation of positive solutions in some systems of elliptic equations[J]. SIAM Journal on Mathematical Analysis, 1986, 17(6):1339-1353.
[8] CASAL A, EILBECK J C, LÓPEZ-GÓMEZ J. Existence and uniqueness of coexistence states for a predator-prey model with diffusion[J]. Differential Integral Equations, 1994, 7(2):411-439.
[9] DU Yihong, LOU Yuan. S-shaped global solution curve and Hopf bifurcation of positive solutions to a predator-prey model[J]. Journal of Differential Equations, 1998, 144(2):390-440.
[10] DANCER E N, DU Yihong. Effects of certain degeneracies in the predator-prey model[J]. SIAM Journal on Mathematical Analysis, 2002, 34(2)292-314.
[11] DANCER E N, DU Yihong. On a free boundary problem arising from population biology[J]. Indiana University Mathematics Journal, 2003, 52(1)51-67.
[12] DU Yihong, HUANG Qingguang. Blow-up solutions for a class of semilinear elliptic and parabolic equations[J]. SIAM Journal on Mathematical Analysis, 1999, 31(1)1-18.
[13] 叶其孝,李正元.反应扩散引论[M]. 北京:科学出版社, 1990. YE Qixiao, LI Zhengyuan. Introduction to reaction-diffusion equations[M]. Beijing: Science Press, 1990.
[14] LÓPEZ-GÓMEZ J, SABINA de Lis J C. First variations of principal eigenvalues with respect to the domain and point-wise growth of positive solutions for problems where bifurcation from infinity occurs[J]. Journal of Differential Equations, 1998, 148(1):47-64.
[15] CRANDALL M G, RABINOWITZ P H. Bifurcation from simple eigenvalues[J]. Journal of Functional Analysis, 1971, 8:321-340.
[16] LÓPEZ-GÓMEZ J. Spectral theory and nonlinear functional analysis[M]. Florida: Chapman and Hall/CRC Research Notes in Mathematics, 2001.
[17] LI Shanbing, WU Jianhua, LIU Sanyang. Effect of cross-diffusion on the stationary problem of a Leslie prey-predator model with a protection zone[J]. Calculus of Variations and Partial Differential Equations, 2017, 56(3):82(35 pages).
[1] 黄爱玲,林帅. 局部量子Bernoulli噪声意义下的随机Schrödinger方程的有限维逼近[J]. 山东大学学报(理学版), 2017, 52(12): 67-71.
[2] 张路寅,张玉海,钱坤明. 关于不适定问题的迭代Tikhonov正则化方法[J]. J4, 2011, 46(4): 29-33.
[3] 姜良站,李艳玲*. 一类具有常数避难所的捕食-食饵模型非常数正解的存在性[J]. J4, 2011, 46(2): 15-21.
[4] 王娟1,刘辉昭2. 一类抛物型Monge-Ampère方程具Neumann边界条件的初边值问题[J]. J4, 2010, 45(6): 70-73.
[5] 别群益. 具避难所的捕食-食饵模型非常数正解的存在性[J]. J4, 2009, 44(3): 50-55 .
[6] 张丽娜,李艳玲,解玉龙 . 具有避难所的捕食-食饵模型的全局分歧[J]. J4, 2007, 42(12): 110-115 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!