您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2018, Vol. 53 ›› Issue (4): 66-75.doi: 10.6040/j.issn.1671-9352.0.2017.340

• • 上一篇    下一篇

次线性期望框架下乘积空间的正则性

李小娟1,高强2*   

  1. 1.山东青年政治学院信息工程学院, 山东 济南 250103;2.山东大学中泰证券金融研究院, 山东 济南 250100
  • 收稿日期:2017-06-30 出版日期:2018-04-20 发布日期:2018-04-13
  • 通讯作者: 高强(1990— ),男,博士,研究方向为非线性数学期望、金融数学、统计学. E-mail:qianggao1990@163.com E-mail:lxj110055@126.com
  • 作者简介:李小娟(1984— ),女,硕士,讲师,研究方向为非线性数学期望. E-mail:lxj110055@126.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2014AP005,ZR2016AP12)

Regularity for product space under sublinear expectation framework

LI Xiao-juan1, GAO Qiang2*   

  1. 1. School of Information Engineering, Shandong Youth University of Political Science, Jinan 250103, Shandong, China;
    2. Zhongtai Securities Institute for Financial Studies, Shandong University, Jinan 250100, Shandong, China
  • Received:2017-06-30 Online:2018-04-20 Published:2018-04-13

摘要: 证明了一列正则次线性期望空间的乘积空间是正则的。进一步,在样本空间都是完备可分距离空间的假设下,证明了乘积空间的完备化空间仍然是正则的。

关键词: 正则性, 次线性期望, 乘积空间, 完备可分距离空间

Abstract: This paper proves that the product space for a sequence regular sublinear expectation spaces is regular. Furthermore, the sample spaces are all complete separable metric spaces under the assumption, it is shown that the completion of the product space is still regular.

Key words: regularity, product space, sublinear expectation, complete separable metric space

中图分类号: 

  • O211.1
[1] 严加安. 测度论讲义[M]. 北京:科学出版社,2004. YAN Jiaan. Lecture notes in measure theory[M]. Beijing: Science Press: 2004.
[2] PENG Shige. Filtration consistent nonlinear expectations and evaluations of contingent claims[J]. Acta Mathematicae Applicatae Sinica, English Series, 2004, 20(2):1-24.
[3] PENG Shige. Nonlinear expectations and nonlinear Markov chains[J]. Chinese Annals of Mathematics: Series B, 2005, 26(2):159-184.
[4] PENG Shige. G-expectation, G-Brownian motion and related stochastic calculus of Itô type[J]. Stochastic Analysis and Applications, 2006, 2(4):541-567.
[5] PENG Shige. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation[J]. Stochastic Processes and Their Applications, 2008, 118(12):2223-2253.
[6] PENG Shige. A new central limit theorem under sublinear expectations[J]. Mathematics, 2008, 53(8):1989-1994.
[7] PENG Shige. Nolinear expectations and stochastic calculus under uncertainty[EB/OL]. [2017-02-06]. http://arxiv.org/abs/1002.4546v1
[8] DENIS L, HU Mingshang, PENG Shige. Function spaces and capacity related to a sublinear expectation: application to G-Brownian motion paths[J]. Potential Analysis, 2011, 34(2):139-161.
[9] HU Mingshang, PENG Shige. On representation theorem of G-expectations and paths of G-Brownian motion[J]. Acta Mathematicae Applicatae Sinica English, 2009, 25(3):539-546.
[1] 杜广伟. 具有次临界增长的椭圆障碍问题解的正则性[J]. 山东大学学报(理学版), 2018, 53(6): 57-63.
[2] 刘智. 次线性期望下的大数定律及应用[J]. J4, 2012, 47(7): 76-80.
[3] 宋丽1,2. 容度的BorelCantelli引理[J]. J4, 2012, 47(6): 117-120.
[4] 宋丽1,2. 次线性期望的Jensen不等式[J]. J4, 2011, 46(3): 109-111.
[5] 代丽美. Hessian方程黏性解的正则性[J]. J4, 2010, 45(9): 62-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!